These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 21384960)

  • 1. Complex wave patterns in an effective reaction-diffusion model for chemical reactions in microemulsions.
    Alonso S; John K; Bär M
    J Chem Phys; 2011 Mar; 134(9):094117. PubMed ID: 21384960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction.
    Rossi F; Vanag VK; Epstein IR
    Chemistry; 2011 Feb; 17(7):2138-45. PubMed ID: 21254264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion.
    Vanag VK; Epstein IR
    Phys Rev Lett; 2001 Nov; 87(22):228301. PubMed ID: 11736430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-diffusion in a water-in-oil microemulsion loaded with malonic acid or ferroin. Taylor dispersion method for four-component systems.
    Vanag VK; Rossi F; Cherkashin A; Epstein IR
    J Phys Chem B; 2008 Jul; 112(30):9058-70. PubMed ID: 18610956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex patterns in reactive microemulsions: self-organized nanostructures?
    Epstein IR; Vanag VK
    Chaos; 2005 Dec; 15(4):047510. PubMed ID: 16396603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Black spots" in a surfactant-rich Belousov-Zhabotinsky reaction dispersed in a water-in-oil microemulsion system.
    Kaminaga A; Vanag VK; Epstein IR
    J Chem Phys; 2005 May; 122(17):174706. PubMed ID: 15910059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale changes induce microscale effects in Turing patterns.
    Carballido-Landeira J; Taboada P; Muñuzuri AP
    Phys Chem Chem Phys; 2011 Mar; 13(10):4596-9. PubMed ID: 21279240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns in the Belousov-Zhabotinsky reaction in water-in-oil microemulsion induced by a temperature gradient.
    Carballido-Landeira J; Vanag VK; Epstein IR
    Phys Chem Chem Phys; 2010 Apr; 12(15):3656-65. PubMed ID: 20358062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-lasting dashed waves in a reactive microemulsion.
    Carballido-Landeira J; Berenstein I; Taboada P; Mosquera V; Vanag VK; Epstein IR; Pérez-Villar V; Muñuzuri AP
    Phys Chem Chem Phys; 2008 Feb; 10(8):1094-6. PubMed ID: 18270609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear effects of electric fields in the Belousov-Zhabotinsky reaction dissolved in a microemulsion.
    Dähmlow P; Müller SC
    Chaos; 2015 Apr; 25(4):043117. PubMed ID: 25933665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system.
    Foster T; Sottmann T; Schweins R; Strey R
    J Chem Phys; 2008 Feb; 128(6):064902. PubMed ID: 18282069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quaternary cross-diffusion in water-in-oil microemulsions loaded with a component of the Belousov-Zhabotinsky reaction.
    Rossi F; Vanag VK; Tiezzi E; Epstein IR
    J Phys Chem B; 2010 Jun; 114(24):8140-6. PubMed ID: 20509697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures.
    Cho YH; Kim S; Bae EK; Mok CK; Park J
    J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-emulsification of surfactant-oil mixtures produced by diffusion and chemical reaction.
    Miller CA
    J Cosmet Sci; 2001; 52(2):144-5. PubMed ID: 11414256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral characterization of diffusion with chemical shift resolution: highly concentrated water-in-oil emulsion.
    Lasic S; Slund I; Topgaard D
    J Magn Reson; 2009 Aug; 199(2):166-72. PubMed ID: 19435671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photooxidation of diglycine in confined media. Application of the microreactor model for spin-correlated radical pairs in reverse micelles and water-in-oil microemulsions.
    White RC; Tarasov VF; Forbes MD
    Langmuir; 2005 Mar; 21(7):2721-7. PubMed ID: 15779940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature control of pattern formation in the Ru(bpy)(3)(2+)-catalyzed BZ-AOT system.
    McIlwaine R; Vanag VK; Epstein IR
    Phys Chem Chem Phys; 2009 Mar; 11(10):1581-7. PubMed ID: 19240935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, diffusion, and permeability of protein-stabilized monodispersed oil in water emulsions and their gels: a self-diffusion NMR study.
    Romoscanu AI; Fenollosa A; Acquistapace S; Gunes D; Martins-Deuchande T; Clausen P; Mezzenga R; Nydén M; Zick K; Hughes E
    Langmuir; 2010 May; 26(9):6184-92. PubMed ID: 20369894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of diffusion coefficients via periodic vertical forcing controls the mechanism of Turing pattern formation.
    Guiu-Souto J; Carballido-Landeira J; Pérez-Villar V; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066209. PubMed ID: 21230725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.