These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21384990)

  • 1. Modulation of volume fraction results in different kinetic effects in Belousov-Zhabotinsky reaction confined in AOT-reverse microemulsion.
    Álvarez EV; Carballido-Landeira J; Guiu-Souto J; Taboada P; Muñuzuri AP
    J Chem Phys; 2011 Mar; 134(9):094512. PubMed ID: 21384990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear effects of electric fields in the Belousov-Zhabotinsky reaction dissolved in a microemulsion.
    Dähmlow P; Müller SC
    Chaos; 2015 Apr; 25(4):043117. PubMed ID: 25933665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature control of pattern formation in the Ru(bpy)(3)(2+)-catalyzed BZ-AOT system.
    McIlwaine R; Vanag VK; Epstein IR
    Phys Chem Chem Phys; 2009 Mar; 11(10):1581-7. PubMed ID: 19240935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction.
    Rossi F; Vanag VK; Epstein IR
    Chemistry; 2011 Feb; 17(7):2138-45. PubMed ID: 21254264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Black spots" in a surfactant-rich Belousov-Zhabotinsky reaction dispersed in a water-in-oil microemulsion system.
    Kaminaga A; Vanag VK; Epstein IR
    J Chem Phys; 2005 May; 122(17):174706. PubMed ID: 15910059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns in the Belousov-Zhabotinsky reaction in water-in-oil microemulsion induced by a temperature gradient.
    Carballido-Landeira J; Vanag VK; Epstein IR
    Phys Chem Chem Phys; 2010 Apr; 12(15):3656-65. PubMed ID: 20358062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-diffusion in a water-in-oil microemulsion loaded with malonic acid or ferroin. Taylor dispersion method for four-component systems.
    Vanag VK; Rossi F; Cherkashin A; Epstein IR
    J Phys Chem B; 2008 Jul; 112(30):9058-70. PubMed ID: 18610956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of initial substrate concentration of the Belousov-Zhabotinsky reaction on self-oscillation for microgel system.
    Suzuki D; Yoshida R
    J Phys Chem B; 2008 Oct; 112(40):12618-24. PubMed ID: 18785705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of noise correlation on noise-induced oscillation frequency in the photosensitive Belousov-Zhabotinsky reaction in a continuous stirred tank reactor.
    Simakov DS; Pérez-Mercader J
    J Phys Chem A; 2013 Dec; 117(51):13999-4005. PubMed ID: 24274189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex wave patterns in an effective reaction-diffusion model for chemical reactions in microemulsions.
    Alonso S; John K; Bär M
    J Chem Phys; 2011 Mar; 134(9):094117. PubMed ID: 21384960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex patterns in reactive microemulsions: self-organized nanostructures?
    Epstein IR; Vanag VK
    Chaos; 2005 Dec; 15(4):047510. PubMed ID: 16396603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations of the effect of anionic, cationic, neutral, and zwitterionic surfactants on the Belousov-Zhabotinsky reaction.
    Paul A
    J Phys Chem B; 2005 May; 109(19):9639-44. PubMed ID: 16852160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion.
    Vanag VK; Epstein IR
    Phys Rev Lett; 2001 Nov; 87(22):228301. PubMed ID: 11736430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beating polymer gels coupled with a nonlinear chemical reaction.
    Yoshida R; Kokufuta E; Yamaguchi T
    Chaos; 1999 Jun; 9(2):260-266. PubMed ID: 12779823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-lasting dashed waves in a reactive microemulsion.
    Carballido-Landeira J; Berenstein I; Taboada P; Mosquera V; Vanag VK; Epstein IR; Pérez-Villar V; Muñuzuri AP
    Phys Chem Chem Phys; 2008 Feb; 10(8):1094-6. PubMed ID: 18270609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient hydrolysis of 4-nitrophenylphosphate catalyzed by copper bipyridyl in microemulsions.
    Tafesse F; Eguzozie K
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):954-9. PubMed ID: 18304635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and control of patterns in reaction-diffusion systems.
    Vanag VK; Epstein IR
    Chaos; 2008 Jun; 18(2):026107. PubMed ID: 18601509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological microemulsions: Part III--The formation characteristics and transport properties of saffola-aerosol OT-hexylamine-water system.
    Paul BK; Moulik SP
    Indian J Biochem Biophys; 1991 Jun; 28(3):174-83. PubMed ID: 1723964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ternary phase diagram for the Belousov-Zhabotinsky reaction-induced mechanical oscillation of intelligent PNIPAM colloids.
    Shen J; Pullela S; Marquez M; Cheng Z
    J Phys Chem A; 2007 Dec; 111(48):12081-5. PubMed ID: 17994710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of autonomously oscillating viscosity induced by swelling/deswelling oscillation of the microgels.
    Taniguchi H; Suzuki D; Yoshida R
    J Phys Chem B; 2010 Feb; 114(7):2405-10. PubMed ID: 20121178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.