These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 21384998)

  • 1. Connectivity percolation of polydisperse anisotropic nanofillers.
    Otten RH; van der Schoot P
    J Chem Phys; 2011 Mar; 134(9):094902. PubMed ID: 21384998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuum percolation of polydisperse nanofillers.
    Otten RH; van der Schoot P
    Phys Rev Lett; 2009 Nov; 103(22):225704. PubMed ID: 20366111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental approach to the percolation of sticky nanotubes.
    Vigolo B; Coulon C; Maugey M; Zakri C; Poulin P
    Science; 2005 Aug; 309(5736):920-3. PubMed ID: 16081733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectedness percolation in polydisperse rod systems: A modified Bethe lattice approach.
    Chatterjee AP
    J Chem Phys; 2010 Jun; 132(22):224905. PubMed ID: 20550417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations.
    Finner SP; Kotsev MI; Miller MA; van der Schoot P
    J Chem Phys; 2018 Jan; 148(3):034903. PubMed ID: 29352778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connectedness percolation in monodisperse rod systems: clustering effects.
    Chatterjee AP
    J Phys Condens Matter; 2011 Sep; 23(37):375101. PubMed ID: 21844645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Percolation in suspensions of polydisperse hard rods: Quasi universality and finite-size effects.
    Meyer H; van der Schoot P; Schilling T
    J Chem Phys; 2015 Jul; 143(4):044901. PubMed ID: 26233158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites.
    Tkalya E; Ghislandi M; Otten R; Lotya M; Alekseev A; van der Schoot P; Coleman J; de With G; Koning C
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15113-21. PubMed ID: 25116440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling electrical percolation in multicomponent carbon nanotube dispersions.
    Kyrylyuk AV; Hermant MC; Schilling T; Klumperman B; Koning CE; van der Schoot P
    Nat Nanotechnol; 2011 Apr; 6(6):364-9. PubMed ID: 21478868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks.
    Simien D; Fagan JA; Luo W; Douglas JF; Migler K; Obrzut J
    ACS Nano; 2008 Sep; 2(9):1879-84. PubMed ID: 19206428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectedness percolation of hard convex polygonal rods and platelets.
    Drwenski T; van Roij R; van der Schoot P
    J Chem Phys; 2018 Aug; 149(5):054902. PubMed ID: 30089388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly conductive multifunctional graphene polycarbonate nanocomposites.
    Yoonessi M; Gaier JR
    ACS Nano; 2010 Dec; 4(12):7211-20. PubMed ID: 21082818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connectedness percolation of hard deformed rods.
    Drwenski T; Dussi S; Dijkstra M; van Roij R; van der Schoot P
    J Chem Phys; 2017 Dec; 147(22):224904. PubMed ID: 29246051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between the length reduction of carbon nanotubes and the electrical percolation threshold of melt compounded polyolefin composites.
    Vasileiou AA; Kontopoulou M; Gui H; Docoslis A
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1624-31. PubMed ID: 25548884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric percolation in polydisperse systems of finite-diameter rods: effects due to particle clustering and inter-particle correlations.
    Chatterjee AP
    J Chem Phys; 2012 Oct; 137(13):134903. PubMed ID: 23039609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical and optical percolations of polystyrene latex-multiwalled carbon nanotube composites.
    Kara S; Arda E; Dolastir F; Pekcan O
    J Colloid Interface Sci; 2010 Apr; 344(2):395-401. PubMed ID: 20106484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum percolation of carbon nanotubes in polymeric and colloidal media.
    Kyrylyuk AV; van der Schoot P
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8221-6. PubMed ID: 18550818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods.
    Jadrich R; Schweizer KS
    J Chem Phys; 2011 Dec; 135(23):234902. PubMed ID: 22191900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability boundaries, percolation threshold, and two-phase coexistence for polydisperse fluids of adhesive colloidal particles.
    Fantoni R; Gazzillo D; Giacometti A
    J Chem Phys; 2005 Jan; 122(3):34901. PubMed ID: 15740221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.
    Simoes R; Silva J; Vaia R; Sencadas V; Costa P; Gomes J; Lanceros-Méndez S
    Nanotechnology; 2009 Jan; 20(3):035703. PubMed ID: 19417305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.