These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21385029)

  • 1. An algorithmic framework for predicting side effects of drugs.
    Atias N; Sharan R
    J Comput Biol; 2011 Mar; 18(3):207-18. PubMed ID: 21385029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking biochemical pathways and networks to adverse drug reactions.
    Zheng H; Wang H; Xu H; Wu Y; Zhao Z; Azuaje F
    IEEE Trans Nanobioscience; 2014 Jun; 13(2):131-7. PubMed ID: 24893363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative prediction of drug side effects based on drug-related features.
    Niu Y; Zhang W
    Interdiscip Sci; 2017 Sep; 9(3):434-444. PubMed ID: 28516319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARWAR: A network approach for predicting Adverse Drug Reactions.
    Rahmani H; Weiss G; Méndez-Lucio O; Bender A
    Comput Biol Med; 2016 Jan; 68():101-8. PubMed ID: 26638149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DSEP: A Tool Implementing Novel Method to Predict Side Effects of Drugs.
    Niu SY; Xin MY; Luo J; Liu MY; Jiang ZR
    J Comput Biol; 2015 Dec; 22(12):1108-17. PubMed ID: 26484391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel semisupervised algorithm for rare prescription side effect discovery.
    Reps JM; Garibaldi JM; Aickelin U; Soria D; Gibson JE; Hubbard RB
    IEEE J Biomed Health Inform; 2014 Mar; 18(2):537-47. PubMed ID: 24043412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs.
    Kanji R; Sharma A; Bagler G
    Mol Biosyst; 2015 Nov; 11(11):2900-6. PubMed ID: 26252576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unified frame of predicting side effects of drugs by using linear neighborhood similarity.
    Zhang W; Yue X; Liu F; Chen Y; Tu S; Zhang X
    BMC Syst Biol; 2017 Dec; 11(Suppl 6):101. PubMed ID: 29297371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network.
    Hu B; Wang H; Yu Z
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering Links Between Side Effects and Drugs Using a Diffusion Based Method.
    Timilsina M; Tandan M; d'Aquin M; Yang H
    Sci Rep; 2019 Jul; 9(1):10436. PubMed ID: 31320740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GESSE: Predicting Drug Side Effects from Drug-Target Relationships.
    Pérez-Nueno VI; Souchet M; Karaboga AS; Ritchie DW
    J Chem Inf Model; 2015 Sep; 55(9):1804-23. PubMed ID: 26251970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the associations between drug side-effects and therapeutic indications.
    Wang F; Zhang P; Cao N; Hu J; Sorrentino R
    J Biomed Inform; 2014 Oct; 51():15-23. PubMed ID: 24727480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Network Prediction of Drug Side Effects.
    Shaked I; Oberhardt MA; Atias N; Sharan R; Ruppin E
    Cell Syst; 2016 Mar; 2(3):209-13. PubMed ID: 27135366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects.
    Liang X; Li J; Fu Y; Qu L; Tan Y; Zhang P
    J Biomed Inform; 2022 Aug; 132():104131. PubMed ID: 35840061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug side-effect prediction based on the integration of chemical and biological spaces.
    Yamanishi Y; Pauwels E; Kotera M
    J Chem Inf Model; 2012 Dec; 52(12):3284-92. PubMed ID: 23157436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A similarity-based method for prediction of drug side effects with heterogeneous information.
    Zhao X; Chen L; Lu J
    Math Biosci; 2018 Dec; 306():136-144. PubMed ID: 30296417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating Essential Proteins to Drug Side-Effects Using Canonical Component Analysis: A Structure-Based Approach.
    Liu T; Altman RB
    J Chem Inf Model; 2015 Jul; 55(7):1483-94. PubMed ID: 26121262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting drug side-effect profiles: a chemical fragment-based approach.
    Pauwels E; Stoven V; Yamanishi Y
    BMC Bioinformatics; 2011 May; 12():169. PubMed ID: 21586169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NRBdMF: A Recommendation Algorithm for Predicting Drug Effects Considering Directionality.
    Azuma I; Mizuno T; Kusuhara H
    J Chem Inf Model; 2023 Jan; 63(2):474-483. PubMed ID: 36635231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.