BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 21385054)

  • 1. The C. elegans PRMT-3 possesses a type III protein arginine methyltransferase activity.
    Takahashi Y; Daitoku H; Yokoyama A; Nakayama K; Kim JD; Fukamizu A
    J Recept Signal Transduct Res; 2011 Apr; 31(2):168-72. PubMed ID: 21385054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PRMT-5 converts monomethylarginines into symmetrical dimethylarginines in Caenorhabditis elegans.
    Kanou A; Kako K; Hirota K; Fukamizu A
    J Biochem; 2017 Feb; 161(2):231-235. PubMed ID: 28173048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric arginine dimethylation determines life span in C. elegans by regulating forkhead transcription factor DAF-16.
    Takahashi Y; Daitoku H; Hirota K; Tamiya H; Yokoyama A; Kako K; Nagashima Y; Nakamura A; Shimada T; Watanabe S; Yamagata K; Yasuda K; Ishii N; Fukamizu A
    Cell Metab; 2011 May; 13(5):505-16. PubMed ID: 21531333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous ablation of prmt-1 and prmt-5 abolishes asymmetric and symmetric arginine dimethylations in Caenorhabditis elegans.
    Hirota K; Shigekawa C; Araoi S; Sha L; Inagawa T; Kanou A; Kako K; Daitoku H; Fukamizu A
    J Biochem; 2017 Jun; 161(6):521-527. PubMed ID: 28158808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The GATA transcription factor ELT-2 modulates both the expression and methyltransferase activity of PRMT-1 in Caenorhabditis elegans.
    Araoi S; Daitoku H; Yokoyama A; Kako K; Hirota K; Fukamizu A
    J Biochem; 2018 May; 163(5):433-440. PubMed ID: 29361115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The macromolecular complexes of histones affect protein arginine methyltransferase activities.
    Fulton MD; Cao M; Ho MC; Zhao X; Zheng YG
    J Biol Chem; 2021 Oct; 297(4):101123. PubMed ID: 34492270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caenorhabditis elegans PRMT-7 and PRMT-9 Are Evolutionarily Conserved Protein Arginine Methyltransferases with Distinct Substrate Specificities.
    Hadjikyriacou A; Clarke SG
    Biochemistry; 2017 May; 56(20):2612-2626. PubMed ID: 28441492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems.
    Wang YC; Li C
    FEBS J; 2012 Mar; 279(6):932-45. PubMed ID: 22251447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats.
    Hasegawa M; Toma-Fukai S; Kim JD; Fukamizu A; Shimizu T
    FEBS Lett; 2014 May; 588(10):1942-8. PubMed ID: 24726727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone methyltransferases in Aspergillus nidulans: evidence for a novel enzyme with a unique substrate specificity.
    Trojer P; Dangl M; Bauer I; Graessle S; Loidl P; Brosch G
    Biochemistry; 2004 Aug; 43(33):10834-43. PubMed ID: 15311944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo analysis of the major type I protein arginine methyltransferase from Trypanosoma brucei.
    Pelletier M; Pasternack DA; Read LK
    Mol Biochem Parasitol; 2005 Dec; 144(2):206-17. PubMed ID: 16198009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity, processivity, and kinetic mechanism of protein arginine methyltransferase 5.
    Wang M; Xu RM; Thompson PR
    Biochemistry; 2013 Aug; 52(32):5430-40. PubMed ID: 23866019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4.
    Lakowski TM; Frankel A
    Biochem J; 2009 Jun; 421(2):253-61. PubMed ID: 19405910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EWS is a substrate of type I protein arginine methyltransferase, PRMT8.
    Kim JD; Kako K; Kakiuchi M; Park GG; Fukamizu A
    Int J Mol Med; 2008 Sep; 22(3):309-15. PubMed ID: 18698489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei.
    Fisk JC; Sayegh J; Zurita-Lopez C; Menon S; Presnyak V; Clarke SG; Read LK
    J Biol Chem; 2009 Apr; 284(17):11590-600. PubMed ID: 19254949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop.
    Feng Y; Hadjikyriacou A; Clarke SG
    J Biol Chem; 2014 Nov; 289(47):32604-16. PubMed ID: 25294873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caenorhabditis elegans protein arginine methyltransferase PRMT-5 negatively regulates DNA damage-induced apoptosis.
    Yang M; Sun J; Sun X; Shen Q; Gao Z; Yang C
    PLoS Genet; 2009 Jun; 5(6):e1000514. PubMed ID: 19521535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2.
    Hadjikyriacou A; Yang Y; Espejo A; Bedford MT; Clarke SG
    J Biol Chem; 2015 Jul; 290(27):16723-43. PubMed ID: 25979344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential.
    Krause CD; Yang ZH; Kim YS; Lee JH; Cook JR; Pestka S
    Pharmacol Ther; 2007 Jan; 113(1):50-87. PubMed ID: 17005254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs).
    Morales Y; Cáceres T; May K; Hevel JM
    Arch Biochem Biophys; 2016 Jan; 590():138-152. PubMed ID: 26612103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.