BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21385136)

  • 1. Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats.
    Lankveld DP; Rayavarapu RG; Krystek P; Oomen AG; Verharen HW; van Leeuwen TG; De Jong WH; Manohar S
    Nanomedicine (Lond); 2011 Feb; 6(2):339-49. PubMed ID: 21385136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEG-modified gold nanorods with a stealth character for in vivo applications.
    Niidome T; Yamagata M; Okamoto Y; Akiyama Y; Takahashi H; Kawano T; Katayama Y; Niidome Y
    J Control Release; 2006 Sep; 114(3):343-7. PubMed ID: 16876898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stabilization and targeting of surfactant-synthesized gold nanorods.
    Rostro-Kohanloo BC; Bickford LR; Payne CM; Day ES; Anderson LJ; Zhong M; Lee S; Mayer KM; Zal T; Adam L; Dinney CP; Drezek RA; West JL; Hafner JH
    Nanotechnology; 2009 Oct; 20(43):434005. PubMed ID: 19801751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual CTAB Ligands as Mass Spectrometry Labels to Monitor Cellular Uptake of Au Nanorods.
    García I; Henriksen-Lacey M; Sánchez-Iglesias A; Grzelczak M; Penadés S; Liz-Marzán LM
    J Phys Chem Lett; 2015 Jun; 6(11):2003-8. PubMed ID: 26266492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CTAB-coated gold nanorods elicit allergic response through degranulation and cell death in human basophils.
    Cheung KL; Chen H; Chen Q; Wang J; Ho HP; Wong CK; Kong SK
    Nanoscale; 2012 Aug; 4(15):4447-9. PubMed ID: 22699707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ethylene glycol)-modified gold nanorods as a photothermal nanodevice for hyperthermia.
    Niidome T; Akiyama Y; Yamagata M; Kawano T; Mori T; Niidome Y; Katayama Y
    J Biomater Sci Polym Ed; 2009; 20(9):1203-15. PubMed ID: 19520008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacement of CTAB with peptidic ligands at the surface of gold nanorods and their self-assembling properties.
    Hamon C; Bizien T; Artzner F; Even-Hernandez P; Marchi V
    J Colloid Interface Sci; 2014 Jun; 424():90-7. PubMed ID: 24767503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo monitoring of intravenously injected gold nanorods using near-infrared light.
    Niidome T; Akiyama Y; Shimoda K; Kawano T; Mori T; Katayama Y; Niidome Y
    Small; 2008 Jul; 4(7):1001-7. PubMed ID: 18581412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.
    De Jong WH; Hagens WI; Krystek P; Burger MC; Sips AJ; Geertsma RE
    Biomaterials; 2008 Apr; 29(12):1912-9. PubMed ID: 18242692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytogenetic evaluation of gold nanorods using Allium cepa test.
    Rajeshwari A; Roy B; Chandrasekaran N; Mukherjee A
    Plant Physiol Biochem; 2016 Dec; 109():209-219. PubMed ID: 27744263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice.
    Akiyama Y; Mori T; Katayama Y; Niidome T
    J Control Release; 2009 Oct; 139(1):81-4. PubMed ID: 19538994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags.
    Boca SC; Astilean S
    Nanotechnology; 2010 Jun; 21(23):235601. PubMed ID: 20463383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection.
    Lipka J; Semmler-Behnke M; Sperling RA; Wenk A; Takenaka S; Schleh C; Kissel T; Parak WJ; Kreyling WG
    Biomaterials; 2010 Sep; 31(25):6574-81. PubMed ID: 20542560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iodine-131 radiolabeling of poly ethylene glycol-coated gold nanorods for in vivo imaging.
    Eskandari N; Yavari K; Outokesh M; Sadjadi S; Ahmadi SJ
    J Labelled Comp Radiopharm; 2013 Jan; 56(1):12-6. PubMed ID: 24285135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro toxicity studies of polymer-coated gold nanorods.
    Rayavarapu RG; Petersen W; Hartsuiker L; Chin P; Janssen H; van Leeuwen FW; Otto C; Manohar S; van Leeuwen TG
    Nanotechnology; 2010 Apr; 21(14):145101. PubMed ID: 20220222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Super-Stable Gold Nanorods via Encapsulation into Block Copolymer Micelles.
    Kim DH; Wei A; Won YY
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1872-7. PubMed ID: 22471403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of biodistribution and therapeutic index via increase of polyethylene glycol on drug-carrying liposomes in an HT-29/luc xenografted mouse model.
    Chow TH; Lin YY; Hwang JJ; Wang HE; Tseng YL; Wang SJ; Liu RS; Lin WJ; Yang CS; Ting G
    Anticancer Res; 2009 Jun; 29(6):2111-20. PubMed ID: 19528471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodide impurities in hexadecyltrimethylammonium bromide (CTAB) products: lot-lot variations and influence on gold nanorod synthesis.
    Rayavarapu RG; Ungureanu C; Krystek P; van Leeuwen TG; Manohar S
    Langmuir; 2010 Apr; 26(7):5050-5. PubMed ID: 20205463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The facile removal of CTAB from the surface of gold nanorods.
    He J; Unser S; Bruzas I; Cary R; Shi Z; Mehra R; Aron K; Sagle L
    Colloids Surf B Biointerfaces; 2018 Mar; 163():140-145. PubMed ID: 29291499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods.
    Smith DK; Korgel BA
    Langmuir; 2008 Feb; 24(3):644-9. PubMed ID: 18184021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.