These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21385332)

  • 1. Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting.
    Gruene M; Unger C; Koch L; Deiwick A; Chichkov B
    Biomed Eng Online; 2011 Mar; 10():19. PubMed ID: 21385332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Resolved Imaging Study of Jetting Dynamics during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Mei R; Huang Y; Chrisey DB
    Langmuir; 2015 Jun; 31(23):6447-56. PubMed ID: 26011320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdrop printing of hydrogel bioinks into 3D tissue-like geometries.
    Pataky K; Braschler T; Negro A; Renaud P; Lutolf MP; Brugger J
    Adv Mater; 2012 Jan; 24(3):391-6. PubMed ID: 22161949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-assisted printing of alginate long tubes and annular constructs.
    Yan J; Huang Y; Chrisey DB
    Biofabrication; 2013 Mar; 5(1):015002. PubMed ID: 23172571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs.
    Xiong R; Zhang Z; Chai W; Huang Y; Chrisey DB
    Biofabrication; 2015 Dec; 7(4):045011. PubMed ID: 26693735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink.
    Colosi C; Shin SR; Manoharan V; Massa S; Costantini M; Barbetta A; Dokmeci MR; Dentini M; Khademhosseini A
    Adv Mater; 2016 Jan; 28(4):677-84. PubMed ID: 26606883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds.
    Seidel J; Ahlfeld T; Adolph M; Kümmritz S; Steingroewer J; Krujatz F; Bley T; Gelinsky M; Lode A
    Biofabrication; 2017 Nov; 9(4):045011. PubMed ID: 28837040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrohydrodynamic bioprinter for alginate hydrogels containing living cells.
    Gasperini L; Maniglio D; Motta A; Migliaresi C
    Tissue Eng Part C Methods; 2015 Feb; 21(2):123-32. PubMed ID: 24903714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioprintable form of chitosan hydrogel for bone tissue engineering.
    Demirtaş TT; Irmak G; Gümüşderelioğlu M
    Biofabrication; 2017 Jul; 9(3):035003. PubMed ID: 28639943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing fiber reinforced hydrogel composites.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15998-6006. PubMed ID: 25197745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    Macromol Rapid Commun; 2015 Jun; 36(12):1211-7. PubMed ID: 25864515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation.
    Jiang T; Munguia-Lopez J; Flores-Torres S; Grant J; Vijayakumar S; De Leon-Rodriguez A; Kinsella JM
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30010644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.
    Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K
    Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures.
    Christensen K; Davis B; Jin Y; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():65-74. PubMed ID: 29752120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.
    Gong H; Liu M; Zhang B; Cui D; Gao C; Ni B; Chen J
    Int J Biol Macromol; 2011 Dec; 49(5):1083-91. PubMed ID: 21925204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment.
    Izadifar M; Babyn P; Kelly ME; Chapman D; Chen X
    Tissue Eng Part C Methods; 2017 Sep; 23(9):548-564. PubMed ID: 28726575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.