These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 21385395)
1. Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis. Tian Z; Yu Y; Lin F; Yu Y; Sanmiguel PJ; Wing RA; McCouch SR; Ma J; Jackson SA BMC Genomics; 2011 Mar; 12():142. PubMed ID: 21385395 [TBL] [Abstract][Full Text] [Related]
2. Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus. Petit J; Bourgeois E; Stenger W; Bès M; Droc G; Meynard D; Courtois B; Ghesquière A; Sabot F; Panaud O; Guiderdoni E Mol Genet Genomics; 2009 Dec; 282(6):633-52. PubMed ID: 19856189 [TBL] [Abstract][Full Text] [Related]
3. DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Ma J; SanMiguel P; Lai J; Messing J; Bennetzen JL Genetics; 2005 Jul; 170(3):1209-20. PubMed ID: 15834137 [TBL] [Abstract][Full Text] [Related]
4. Massive gene losses in Asian cultivated rice unveiled by comparative genome analysis. Sakai H; Itoh T BMC Genomics; 2010 Feb; 11():121. PubMed ID: 20167122 [TBL] [Abstract][Full Text] [Related]
5. Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum. Hass-Jacobus BL; Futrell-Griggs M; Abernathy B; Westerman R; Goicoechea JL; Stein J; Klein P; Hurwitz B; Zhou B; Rakhshan F; Sanyal A; Gill N; Lin JY; Walling JG; Luo MZ; Ammiraju JS; Kudrna D; Kim HR; Ware D; Wing RA; San Miguel P; Jackson SA BMC Genomics; 2006 Aug; 7():199. PubMed ID: 16895597 [TBL] [Abstract][Full Text] [Related]
7. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Zhang QJ; Gao LZ G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161 [TBL] [Abstract][Full Text] [Related]
8. LTR retrotransposons reveal recent extensive inter-subspecies nonreciprocal recombination in Asian cultivated rice. Wang H; Xu Z; Yu H BMC Genomics; 2008 Nov; 9():565. PubMed ID: 19038031 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. Gao L; McCarthy EM; Ganko EW; McDonald JF BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813 [TBL] [Abstract][Full Text] [Related]
10. Retrotranspositions in orthologous regions of closely related grass species. Du C; Swigonová Z; Messing J BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031 [TBL] [Abstract][Full Text] [Related]
11. Evolutionary relationships among rice species with AA genome based on SINE insertion analysis. Cheng C; Tsuchimoto S; Ohtsubo H; Ohtsubo E Genes Genet Syst; 2002 Oct; 77(5):323-34. PubMed ID: 12441643 [TBL] [Abstract][Full Text] [Related]
12. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Piegu B; Guyot R; Picault N; Roulin A; Sanyal A; Kim H; Collura K; Brar DS; Jackson S; Wing RA; Panaud O Genome Res; 2006 Oct; 16(10):1262-9. PubMed ID: 16963705 [TBL] [Abstract][Full Text] [Related]
13. A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice. Xie X; Du H; Tang H; Tang J; Tan X; Liu W; Li T; Lin Z; Liang C; Liu YG Sci China Life Sci; 2021 Feb; 64(2):282-293. PubMed ID: 32737856 [TBL] [Abstract][Full Text] [Related]
14. Polymorphisms and evolutionary history of retrotransposon insertions in rice promoters. Xu Z; Rafi S; Ramakrishna W Genome; 2011 Aug; 54(8):629-38. PubMed ID: 21823826 [TBL] [Abstract][Full Text] [Related]
15. Orthologous comparisons of the Hd1 region across genera reveal Hd1 gene lability within diploid Oryza species and disruptions to microsynteny in Sorghum. Sanyal A; Ammiraju JS; Lu F; Yu Y; Rambo T; Currie J; Kollura K; Kim HR; Chen J; Ma J; San Miguel P; Mingsheng C; Wing RA; Jackson SA Mol Biol Evol; 2010 Nov; 27(11):2487-506. PubMed ID: 20522726 [TBL] [Abstract][Full Text] [Related]
16. Patterns of sequence divergence and evolution of the S orthologous regions between Asian and African cultivated rice species. Guyot R; Garavito A; Gavory F; Samain S; Tohme J; Ghesquière A; Lorieux M PLoS One; 2011 Mar; 6(3):e17726. PubMed ID: 21423767 [TBL] [Abstract][Full Text] [Related]
17. Whole-genome de novo assemblies reveal extensive structural variations and dynamic organelle-to-nucleus DNA transfers in African and Asian rice. Ma X; Fan J; Wu Y; Zhao S; Zheng X; Sun C; Tan L Plant J; 2020 Nov; 104(3):596-612. PubMed ID: 32748498 [TBL] [Abstract][Full Text] [Related]
18. Retrotransposon insertion polymorphisms in six rice genes and their evolutionary history. Xu Z; Ramakrishna W Gene; 2008 Apr; 412(1-2):50-8. PubMed ID: 18291601 [TBL] [Abstract][Full Text] [Related]
19. Paleogenomic analysis of the short arm of chromosome 3 reveals the history of the African and Asian progenitors of cultivated rices. Roulin A; Chaparro C; Piégu B; Jackson S; Panaud O Genome Biol Evol; 2010 Feb; 2():132-9. PubMed ID: 20333229 [TBL] [Abstract][Full Text] [Related]
20. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. Wang H; Liu JS BMC Genomics; 2008 Aug; 9():382. PubMed ID: 18691433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]