BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21385871)

  • 1. Inositol hexakisphosphate-dependent processing of Clostridium sordellii lethal toxin and Clostridium novyi alpha-toxin.
    Guttenberg G; Papatheodorou P; Genisyuerek S; Lü W; Jank T; Einsle O; Aktories K
    J Biol Chem; 2011 Apr; 286(17):14779-86. PubMed ID: 21385871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
    Egerer M; Giesemann T; Herrmann C; Aktories K
    J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haemorrhagic toxin and lethal toxin from Clostridium sordellii strain vpi9048: molecular characterization and comparative analysis of substrate specificity of the large clostridial glucosylating toxins.
    Genth H; Pauillac S; Schelle I; Bouvet P; Bouchier C; Varela-Chavez C; Just I; Popoff MR
    Cell Microbiol; 2014 Nov; 16(11):1706-21. PubMed ID: 24905543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response.
    Popoff MR
    Toxicon; 2018 Jul; 149():54-64. PubMed ID: 29146177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoproteolytic activation of bacterial toxins.
    Shen A
    Toxins (Basel); 2010 May; 2(5):963-77. PubMed ID: 22069620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin.
    Prochazkova K; Satchell KJ
    J Biol Chem; 2008 Aug; 283(35):23656-64. PubMed ID: 18591243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
    Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K
    J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis.
    Jank T; Reinert DJ; Giesemann T; Schulz GE; Aktories K
    J Biol Chem; 2005 Nov; 280(45):37833-8. PubMed ID: 16157585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation.
    Varela Chavez C; Haustant GM; Baron B; England P; Chenal A; Pauillac S; Blondel A; Popoff MR
    Toxins (Basel); 2016 Mar; 8(4):90. PubMed ID: 27023605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EhRho1, a RhoA-like GTPase of Entamoeba histolytica, is modified by clostridial glucosylating cytotoxins.
    Majumder S; Schmidt G; Lohia A; Aktories K
    Appl Environ Microbiol; 2006 Dec; 72(12):7842-8. PubMed ID: 17056697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Difference in protein substrate specificity between hemorrhagic toxin and lethal toxin from Clostridium sordellii.
    Genth H; Hofmann F; Selzer J; Rex G; Aktories K; Just I
    Biochem Biophys Res Commun; 1996 Dec; 229(2):370-4. PubMed ID: 8954906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins.
    Savidge TC; Urvil P; Oezguen N; Ali K; Choudhury A; Acharya V; Pinchuk I; Torres AG; English RD; Wiktorowicz JE; Loeffelholz M; Kumar R; Shi L; Nie W; Braun W; Herman B; Hausladen A; Feng H; Stamler JS; Pothoulakis C
    Nat Med; 2011 Aug; 17(9):1136-41. PubMed ID: 21857653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catalytic domains of Clostridium sordellii lethal toxin and related large clostridial glucosylating toxins specifically recognize the negatively charged phospholipids phosphatidylserine and phosphatidic acid.
    Varela Chavez C; Hoos S; Haustant GM; Chenal A; England P; Blondel A; Pauillac S; Lacy DB; Popoff MR
    Cell Microbiol; 2015 Oct; 17(10):1477-93. PubMed ID: 25882477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins.
    Schirmer J; Aktories K
    Biochim Biophys Acta; 2004 Jul; 1673(1-2):66-74. PubMed ID: 15238250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes and reaction of clostridial glycosylating toxins.
    Ziegler MO; Jank T; Aktories K; Schulz GE
    J Mol Biol; 2008 Apr; 377(5):1346-56. PubMed ID: 18325534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins.
    Shen A; Lupardus PJ; Gersch MM; Puri AW; Albrow VE; Garcia KC; Bogyo M
    Nat Struct Mol Biol; 2011 Mar; 18(3):364-71. PubMed ID: 21317893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric clostridial cytotoxins: identification of the N-terminal region involved in protein substrate recognition.
    Hofmann F; Busch C; Aktories K
    Infect Immun; 1998 Mar; 66(3):1076-81. PubMed ID: 9488398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial toxin and effector glycosyltransferases.
    Belyi Y; Aktories K
    Biochim Biophys Acta; 2010 Feb; 1800(2):134-43. PubMed ID: 19647041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells.
    Guttenberg G; Hornei S; Jank T; Schwan C; Lü W; Einsle O; Papatheodorou P; Aktories K
    J Biol Chem; 2012 Jul; 287(30):24929-40. PubMed ID: 22665487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides.
    Zhang Y; Hamza T; Gao S; Feng H
    Biochem Biophys Res Commun; 2015 Apr; 459(2):259-263. PubMed ID: 25725153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.