These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21386006)

  • 1. Optogenetics in the teaching laboratory: using channelrhodopsin-2 to study the neural basis of behavior and synaptic physiology in Drosophila.
    Pulver SR; Hornstein NJ; Land BL; Johnson BR
    Adv Physiol Educ; 2011 Mar; 35(1):82-91. PubMed ID: 21386006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channelrhodopsin2 mediated stimulation of synaptic potentials at Drosophila neuromuscular junctions.
    Hornstein NJ; Pulver SR; Griffith LC
    J Vis Exp; 2009 Mar; (25):. PubMed ID: 19289998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.
    Pulver SR; Pashkovski SL; Hornstein NJ; Garrity PA; Griffith LC
    J Neurophysiol; 2009 Jun; 101(6):3075-88. PubMed ID: 19339465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Neurogenetics and the Warmth-Gated Ion Channel TRPA1 to Study the Neural Basis of Behavior in Drosophila.
    Berni J; Muldal AM; Pulver SR
    J Undergrad Neurosci Educ; 2010; 9(1):A5-A14. PubMed ID: 23494686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic analysis of neuromuscular transmission in the colon of ChAT-ChR2-YFP BAC transgenic mice.
    Perez-Medina AL; Galligan JJ
    Am J Physiol Gastrointest Liver Physiol; 2019 Nov; 317(5):G569-G579. PubMed ID: 31411893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Synaptic Transmission and Behavior in
    Vilinsky I; Hibbard KL; Johnson BR; Deitcher DL
    J Undergrad Neurosci Educ; 2018; 16(3):A289-A295. PubMed ID: 30254546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological methods for recording synaptic potentials from the NMJ of Drosophila larvae.
    Imlach W; McCabe BD
    J Vis Exp; 2009 Feb; (24):. PubMed ID: 19229189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in the Genetic Dissection of Neural Circuits in Drosophila.
    Guo C; Pan Y; Gong Z
    Neurosci Bull; 2019 Dec; 35(6):1058-1072. PubMed ID: 31119647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving high-frequency optical control of synaptic transmission.
    Jackman SL; Beneduce BM; Drew IR; Regehr WG
    J Neurosci; 2014 May; 34(22):7704-14. PubMed ID: 24872574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-clamp analysis of synaptic transmission at the Drosophila larval neuromuscular junction.
    Zhang B; Stewart B
    Cold Spring Harb Protoc; 2010 Sep; 2010(9):pdb.prot5488. PubMed ID: 20810635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics of the nervous system in Drosophila.
    Hall JC
    Q Rev Biophys; 1982 May; 15(2):223-479. PubMed ID: 6129675
    [No Abstract]   [Full Text] [Related]  

  • 12. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons.
    Zhang W; Ge W; Wang Z
    Eur J Neurosci; 2007 Nov; 26(9):2405-16. PubMed ID: 17970730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic manipulation of neural circuits and behavior in Drosophila larvae.
    Honjo K; Hwang RY; Tracey WD
    Nat Protoc; 2012 Jul; 7(8):1470-8. PubMed ID: 22790083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics.
    Meloni I; Sachidanandan D; Thum AS; Kittel RJ; Murawski C
    Sci Rep; 2020 Oct; 10(1):17614. PubMed ID: 33077824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations in repetitive activation of light sensitive ion channels for long-term studies: Channel rhodopsin in the Drosophila model.
    Higgins J; Hermanns C; Malloy C; Cooper RL
    Neurosci Res; 2017 Dec; 125():1-10. PubMed ID: 28728913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.
    Williams JC; Xu J; Lu Z; Klimas A; Chen X; Ambrosi CM; Cohen IS; Entcheva E
    PLoS Comput Biol; 2013; 9(9):e1003220. PubMed ID: 24068903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term in vitro maintenance of neuromuscular junction activity of Drosophila larvae.
    Ball R; Xing B; Bonner P; Shearer J; Cooper RL
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Feb; 134(2):247-55. PubMed ID: 12547254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in
    Wang Q; Fan H; Li F; Skeeters SS; Krishnamurthy VV; Song Y; Zhang K
    Elife; 2020 Oct; 9():. PubMed ID: 33021199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postganglionic sympathetic neurons, but not locus coeruleus optostimulation, activates neuromuscular transmission in the adult mouse in vivo.
    Wang ZM; Messi ML; Grinevich V; Budygin E; Delbono O
    Mol Cell Neurosci; 2020 Dec; 109():103563. PubMed ID: 33039519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.