These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 2138616)
61. The binding of monoclonal and polyclonal antibodies to the Ca2(+)-ATPase of sarcoplasmic reticulum: effects on interactions between ATPase molecules. Molnar E; Seidler NW; Jona I; Martonosi AN Biochim Biophys Acta; 1990 Apr; 1023(2):147-67. PubMed ID: 1691656 [TBL] [Abstract][Full Text] [Related]
62. Occluded bound calcium on the phosphorylated sarcoplasmic transport ATPase. Takisawa H; Makinose M Nature; 1981 Mar; 290(5803):271-3. PubMed ID: 6451810 [TBL] [Abstract][Full Text] [Related]
63. Effect of compound 48/80 and ruthenium red on the Ca2+-ATPase of sarcoplasmic reticulum. Alves EW; de Meis L J Biol Chem; 1986 Dec; 261(36):16854-9. PubMed ID: 2430971 [TBL] [Abstract][Full Text] [Related]
64. Evidence of a calcium-induced structural change in the ATP-binding site of the sarcoplasmic-reticulum Ca2+-ATPase using terbium formycin triphosphate as an analogue of Mg-ATP. Girardet JL; Dupont Y; Lacapere JJ Eur J Biochem; 1989 Sep; 184(1):131-40. PubMed ID: 2528452 [TBL] [Abstract][Full Text] [Related]
65. Mutation Lys758 --> Ile of the sarcoplasmic reticulum Ca2+-ATPase enhances dephosphorylation of E2P and inhibits the E2 to E1Ca2 transition. Sorensen T; Vilsen B; Andersen JP J Biol Chem; 1997 Nov; 272(48):30244-53. PubMed ID: 9374509 [TBL] [Abstract][Full Text] [Related]
66. Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance, and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase. Stephens EM; Grisham CM Biochemistry; 1979 Oct; 18(22):4876-85. PubMed ID: 228703 [TBL] [Abstract][Full Text] [Related]
67. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum. Plank B; Wyskovsky W; Hellmann G; Suko J Biochim Biophys Acta; 1983 Jul; 732(1):99-109. PubMed ID: 6307368 [TBL] [Abstract][Full Text] [Related]
68. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. James P; Inui M; Tada M; Chiesi M; Carafoli E Nature; 1989 Nov; 342(6245):90-2. PubMed ID: 2530454 [TBL] [Abstract][Full Text] [Related]
69. Functional Co-expression of the canine cardiac Ca2+ pump and phospholamban in Spodoptera frugiperda (Sf21) cells reveals new insights on ATPase regulation. Autry JM; Jones LR J Biol Chem; 1997 Jun; 272(25):15872-80. PubMed ID: 9188486 [TBL] [Abstract][Full Text] [Related]
70. The two calcium ions initially bound to nonphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase can no longer be kinetically distinguished when they dissociate from phosphorylated ATPase toward the lumen. Orlowski S; Champeil P Biochemistry; 1991 Nov; 30(47):11331-42. PubMed ID: 1835657 [TBL] [Abstract][Full Text] [Related]
71. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. Kirchberger MA; Antonetz T J Biol Chem; 1982 May; 257(10):5685-91. PubMed ID: 6121798 [TBL] [Abstract][Full Text] [Related]
72. Mutational analysis of the peptide segment linking phosphorylation and Ca(2+)-binding domains in the sarcoplasmic reticulum Ca(2+)-ATPase. Zhang Z; Sumbilla C; Lewis D; Summers S; Klein MG; Inesi G J Biol Chem; 1995 Jul; 270(27):16283-90. PubMed ID: 7608196 [TBL] [Abstract][Full Text] [Related]
73. Mutations of Arg198 in sarcoplasmic reticulum Ca2+-ATPase cause inhibition of hydrolysis of the phosphoenzyme intermediate formed from inorganic phosphate. Daiho T; Suzuki H; Yamasaki K; Saino T; Kanazawa T FEBS Lett; 1999 Feb; 444(1):54-8. PubMed ID: 10037147 [TBL] [Abstract][Full Text] [Related]
74. The rate of Ca2+ translocation by sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase measured with intravesicular arsenazo III. Beeler T; Keffer J Biochim Biophys Acta; 1984 Jun; 773(1):99-105. PubMed ID: 6145443 [TBL] [Abstract][Full Text] [Related]
75. Rapid filtration study of the phosphorylation-dependent dissociation of calcium from transport sites of purified sarcoplasmic reticulum ATPase and ATP modulation of the catalytic cycle. Champeil P; Guillain F Biochemistry; 1986 Nov; 25(23):7623-33. PubMed ID: 2948563 [TBL] [Abstract][Full Text] [Related]
76. Roles of Leu249, Lys252, and Leu253 in membrane segment M3 of sarcoplasmic reticulum Ca2+-ATPase in control of Ca2+ migration and long-range intramolecular communication. Clausen JD; Andersen JP Biochemistry; 2003 Mar; 42(9):2585-94. PubMed ID: 12614153 [TBL] [Abstract][Full Text] [Related]
77. Distinction of the roles of the two high-affinity calcium sites in the functional activities of the Ca2+-ATPase of sarcoplasmic reticulum. Scott TL; Shamoo AE Eur J Biochem; 1984 Sep; 143(2):427-36. PubMed ID: 6236083 [TBL] [Abstract][Full Text] [Related]
78. The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. Odermatt A; Kurzydlowski K; MacLennan DH J Biol Chem; 1996 Jun; 271(24):14206-13. PubMed ID: 8662932 [TBL] [Abstract][Full Text] [Related]
79. Identification of arginyl residues located at the ATP binding site of sarcoplasmic reticulum Ca2+-ATPase. Modification with 1,2-cyclohexanedione. Kimura K; Suzuki H; Daiho T; Yamasaki K; Kanazawa T J Biol Chem; 1996 Nov; 271(46):28933-41. PubMed ID: 8910542 [TBL] [Abstract][Full Text] [Related]
80. Glutamate-183 in the conserved TGES motif of domain A of sarcoplasmic reticulum Ca2+-ATPase assists in catalysis of E2/E2P partial reactions. Clausen JD; Vilsen B; McIntosh DB; Einholm AP; Andersen JP Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2776-81. PubMed ID: 14970331 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]