These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21386190)

  • 41. Real-time quantification of traces of biogenic volatile selenium compounds in humid air by selected ion flow tube mass spectrometry.
    Sovová K; Shestivska V; Španěl P
    Anal Chem; 2012 Jun; 84(11):4979-83. PubMed ID: 22548680
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantification of hydrogen cyanide in humid air by selected ion flow tube mass spectrometry.
    Spanĕl P; Wang T; Smith D
    Rapid Commun Mass Spectrom; 2004; 18(16):1869-73. PubMed ID: 15329882
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring chloramines and bromamines in a humid environment using selected ion flow tube mass spectrometry.
    Hu WP; Langford VS; McEwan MJ; Milligan DB; Storer MK; Dummer J; Epton MJ
    Rapid Commun Mass Spectrom; 2010 Jun; 24(12):1744-8. PubMed ID: 20499318
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O(+) and NO(+) with a series of volatile aldehydes of biogenic significance.
    Smith D; Chippendale TW; Španěl P
    Rapid Commun Mass Spectrom; 2014 Sep; 28(17):1917-28. PubMed ID: 25088135
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The novel selected-ion flow tube approach to trace gas analysis of air and breath.
    Smith D; Spanel P
    Rapid Commun Mass Spectrom; 1996; 10(10):1183-98. PubMed ID: 8759327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mass spectrometry for real-time quantitative breath analysis.
    Smith D; Španěl P; Herbig J; Beauchamp J
    J Breath Res; 2014 Jun; 8(2):027101. PubMed ID: 24682047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interference of chlorofluorocarbon (CFC)-containing inhalers with measurements of volatile compounds using selected ion flow tube mass spectrometry.
    Epton MJ; Ledingham K; Dummer J; Hu WP; Rhodes B; Senthilmohan ST; Scotter JM; Allardyce R; Cook J; Swanney MP
    Rapid Commun Mass Spectrom; 2009 Feb; 23(3):443-7. PubMed ID: 19125425
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generation of volatile compounds on mouth exposure to urea and sucrose: implications for exhaled breath analysis.
    Spanĕl P; Turner C; Wang T; Bloor R; Smith D
    Physiol Meas; 2006 Feb; 27(2):N7-17. PubMed ID: 16400196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The reactions of H(3)O(+), NO(+) and O(2) (+) with several flavourant esters studied using selected ion flow tube mass spectrometry.
    Iachetta L; Malek L; Ross BM
    Rapid Commun Mass Spectrom; 2010 Mar; 24(6):815-22. PubMed ID: 20187085
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accurate selected ion flow tube mass spectrometry quantification of ethylene oxide contamination in the presence of acetaldehyde.
    Swift SJ; Dryahina K; Lehnert AS; Demarais N; Langford VS; Perkins MJ; Silva LP; Omezzine Gnioua M; Španěl P
    Anal Methods; 2023 Nov; 15(46):6435-6443. PubMed ID: 37971404
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantification of breath carbon disulphide and acetone following a single dose of disulfiram (Antabuse) using selected ion flow tube mass spectrometry (SIFT-MS).
    Bloor RN; Spanĕl P; Smith D
    Addict Biol; 2006 Jun; 11(2):163-9. PubMed ID: 16800830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.
    Smith D; Španěl P
    Bioanalysis; 2016 Jun; 8(11):1183-201. PubMed ID: 27212131
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantification of ammonia in human breath by the selected ion flow tube analytical method using H30+ and 02+ precursor ions.
    Spanĕl P; Davies S; Smith D
    Rapid Commun Mass Spectrom; 1998; 12(12):763-66. PubMed ID: 9650302
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry.
    Smith D; Wang T; Sulé-Suso J; Spanel P; El Haj A
    Rapid Commun Mass Spectrom; 2003; 17(8):845-50. PubMed ID: 12672140
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?
    Smith D; Spaněl P; Fryer AA; Hanna F; Ferns GA
    J Breath Res; 2011 Jun; 5(2):022001. PubMed ID: 21512208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A study of the reactions of H3O+, NO+ and O2+ ions with nine alkoxy alcohols.
    Wang T
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Apr; 26(4):747-52. PubMed ID: 16836154
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites.
    Smith D; Spanel P
    J Breath Res; 2015 Apr; 9(2):022001. PubMed ID: 25830501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An investigation of the reactions of H3O+ and O2+ with NO, NO2, N2O and HNO2 in support of selected ion flow tube mass spectrometry.
    Spanel P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(8):646-51. PubMed ID: 10786901
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Volatile compounds released by Nalophan; implications for selected ion flow tube mass spectrometry and other chemical ionisation mass spectrometry analytical methods.
    Brůhová Michalčíková R; Dryahina K; Smith D; Španěl P
    Rapid Commun Mass Spectrom; 2020 Mar; 34(5):e8602. PubMed ID: 31756780
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selected ion flow tube studies of the reactions of H3O+, NO+ and O2+ with the anaesthetic gases halothane, isoflurane and sevoflurane.
    Wang T; Smith D; Spanĕl P
    Rapid Commun Mass Spectrom; 2002; 16(19):1860-70. PubMed ID: 12271451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.