BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 21386475)

  • 1. Protein stability and enzyme activity at extreme biological temperatures.
    Feller G
    J Phys Condens Matter; 2010 Aug; 22(32):323101. PubMed ID: 21386475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold-adapted enzymes.
    Siddiqui KS; Cavicchioli R
    Annu Rev Biochem; 2006; 75():403-33. PubMed ID: 16756497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some like it cold: biocatalysis at low temperatures.
    Georlette D; Blaise V; Collins T; D'Amico S; Gratia E; Hoyoux A; Marx JC; Sonan G; Feller G; Gerday C
    FEMS Microbiol Rev; 2004 Feb; 28(1):25-42. PubMed ID: 14975528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins of Thermus thermophilus are resistant to glycation-induced protein precipitation: an evolutionary adaptation to life at extreme temperatures?
    Münch G; Berbaum K; Urban C; Schinzel R
    Ann N Y Acad Sci; 2005 Jun; 1043():865-75. PubMed ID: 16037313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model.
    Mereghetti P; Riccardi L; Brandsdal BO; Fantucci P; De Gioia L; Papaleo E
    J Phys Chem B; 2010 Jun; 114(22):7609-19. PubMed ID: 20518574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psychrophilic enzymes: hot topics in cold adaptation.
    Feller G; Gerday C
    Nat Rev Microbiol; 2003 Dec; 1(3):200-8. PubMed ID: 15035024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chaperonin from a thermophilic bacterium, Thermus thermophilus.
    Yoshida M; Ishii N; Muneyuki E; Taguchi H
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1289):305-12. PubMed ID: 8098535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure and backbone dynamics of the K18G/R82E Alicyclobacillus acidocaldarius thioredoxin mutant: a molecular analysis of its reduced thermal stability.
    Leone M; Di Lello P; Ohlenschläger O; Pedone EM; Bartolucci S; Rossi M; Di Blasio B; Pedone C; Saviano M; Isernia C; Fattorusso R
    Biochemistry; 2004 May; 43(20):6043-58. PubMed ID: 15147188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of cold adaptation.
    D'Amico S; Claverie P; Collins T; Georlette D; Gratia E; Hoyoux A; Meuwis MA; Feller G; Gerday C
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):917-25. PubMed ID: 12171655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostability in rubredoxin and its relationship to mechanical rigidity.
    Rader AJ
    Phys Biol; 2009 Dec; 7():16002. PubMed ID: 20009190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein rigidity and thermophilic adaptation.
    Radestock S; Gohlke H
    Proteins; 2011 Apr; 79(4):1089-108. PubMed ID: 21246632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins.
    Elcock AH
    J Mol Biol; 1998 Nov; 284(2):489-502. PubMed ID: 9813132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme catalysts from low-temperature environments.
    Hoyoux A; Blaise V; Collins T; D'Amico S; Gratia E; Huston AL; Marx JC; Sonan G; Zeng Y; Feller G; Gerday C
    J Biosci Bioeng; 2004; 98(5):317-30. PubMed ID: 16233714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water.
    Ladenstein R; Antranikian G
    Adv Biochem Eng Biotechnol; 1998; 61():37-85. PubMed ID: 9670797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.
    De Vendittis E; Castellano I; Cotugno R; Ruocco MR; Raimo G; Masullo M
    J Theor Biol; 2008 Jan; 250(1):156-71. PubMed ID: 17950361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures.
    Roulling F; Godin A; Cipolla A; Collins T; Miyazaki K; Feller G
    Extremophiles; 2016 Sep; 20(5):621-9. PubMed ID: 27315165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The extreme thermostable pyrophosphatase from Sulfolobus acidocaldarius: enzymatic and comparative biophysical characterization.
    Hansen T; Urbanke C; Leppänen VM; Goldman A; Brandenburg K; Schäfer G
    Arch Biochem Biophys; 1999 Mar; 363(1):135-47. PubMed ID: 10049508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The universality of enzymatic rate-temperature dependency.
    Elias M; Wieczorek G; Rosenne S; Tawfik DS
    Trends Biochem Sci; 2014 Jan; 39(1):1-7. PubMed ID: 24315123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and thermodynamic studies of peptidyltransferase in ribosomes from the extreme thermophile Thermus thermophilus.
    Rodriguez-Correa D; Dahlberg AE
    RNA; 2008 Nov; 14(11):2314-8. PubMed ID: 18824514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.
    Piette F; D'Amico S; Struvay C; Mazzucchelli G; Renaut J; Tutino ML; Danchin A; Leprince P; Feller G
    Mol Microbiol; 2010 Apr; 76(1):120-32. PubMed ID: 20199592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.