These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21386478)

  • 1. Ultrasonic propagation velocity in magnetic and magnetorheological fluids due to an external magnetic field.
    Bramantya MA; Motozawa M; Sawada T
    J Phys Condens Matter; 2010 Aug; 22(32):324102. PubMed ID: 21386478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental measurements of ultrasonic propagation velocity and attenuation in a magnetic fluid.
    Motozawa M; Iizuka Y; Sawada T
    J Phys Condens Matter; 2008 May; 20(20):204117. PubMed ID: 21694246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic propagation: a technique to reveal field induced structures in magnetic nanofluids.
    Parekh K; Patel J; Upadhyay RV
    Ultrasonics; 2015 Jul; 60():126-32. PubMed ID: 25791205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic field effects on shear and normal stresses in magnetorheological finishing.
    Lambropoulos JC; Miao C; Jacobs SD
    Opt Express; 2010 Sep; 18(19):19713-23. PubMed ID: 20940866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process parameter effects on material removal in magnetorheological finishing of borosilicate glass.
    Miao C; Lambropoulos JC; Jacobs SD
    Appl Opt; 2010 Apr; 49(10):1951-63. PubMed ID: 20357881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Magnetic Field on Sound Transmission Loss of the Unit Filled with Magnetorheological Fluid.
    Xu X; Wang Y; Wang Y
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-Dependent Stiffness of a Soft Structure Fabricated from Magnetic-Responsive Materials: Magnetorheological Elastomer and Fluid.
    Song BK; Yoon JY; Hong SW; Choi SB
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimisation of Pulsed Ultrasonic Velocimetry system and transducer technology for industrial applications.
    Kotzé R; Wiklund J; Haldenwang R
    Ultrasonics; 2013 Feb; 53(2):459-69. PubMed ID: 23062698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear ac responses of electro-magnetorheological fluids.
    Huang JP; Yu KW
    J Chem Phys; 2004 Oct; 121(15):7526-32. PubMed ID: 15473829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcing Magnetorheological Fluids with Highly Anisotropic 2D Materials.
    Rendos A; Li R; Woodman S; Ling X; Brown KA
    Chemphyschem; 2021 Mar; 22(5):435-440. PubMed ID: 33354890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the microstructure on the propagation velocity of ultrasound in magnetic powders.
    Botello FR; Quintanilla MAS; Castellanos A; Grekova EF; Tournat V
    Ultrasonics; 2018 Jan; 82():153-160. PubMed ID: 28822330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-way sound propagation via spatio-temporal modulation of magnetorheological fluid.
    Nanda A; Karami MA
    J Acoust Soc Am; 2018 Jul; 144(1):412. PubMed ID: 30075657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrasound technique for monitoring the alcoholic wine fermentation.
    Lamberti N; Ardia L; Albanese D; Di Matteo M
    Ultrasonics; 2009 Jan; 49(1):94-7. PubMed ID: 18635244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic rheology of sphere- and rod-based magnetorheological fluids.
    de Vicente J; Segovia-Gutiérrez JP; Andablo-Reyes E; Vereda F; Hidalgo-Alvarez R
    J Chem Phys; 2009 Nov; 131(19):194902. PubMed ID: 19929071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound propagation in wet and airless non-consolidated granular materials.
    Griffiths S; Rescaglio A; Melo F
    Ultrasonics; 2010 Feb; 50(2):139-44. PubMed ID: 19854458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation.
    Chaix JF; Garnier V; Corneloup G
    Ultrasonics; 2006 Feb; 44(2):200-10. PubMed ID: 16386772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Time and Frequency of Magnetic Field Application on MRF Pressure Performance.
    Widodo PJ; Budiana EP; Ubaidillah U; Imaduddin F; Choi SB
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Effect of Fe
    Shixu L; Jing Z; Jun L; Jie F; Miao Y; Song Q
    Langmuir; 2021 Jun; 37(23):7176-7184. PubMed ID: 34096304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of carrier and particle concentration on ultrasound properties of magnetic nanofluids.
    Patel JK; Parekh K
    Ultrasonics; 2015 Jan; 55():26-32. PubMed ID: 25200700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the effect of particle volume fraction on the microstructure of magnetorheological fluids using ultrasound: Transition between the strong-link to the weak-link regimes.
    Rodríguez-López J; Castro P; Elvira L; Montero de Espinosa F
    Ultrasonics; 2015 Aug; 61():10-4. PubMed ID: 25890635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.