These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21386481)

  • 1. Short axis contact in the chaining of ellipsoidal particles of polar molecule dominated electrorheological fluid.
    Bao W; Zheng J; Wu XF; Cao JG; Yang ZJ; Ren N; Tang Y; Gao Y; Huang JP; Zhou LW
    J Phys Condens Matter; 2010 Aug; 22(32):324105. PubMed ID: 21386481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saturated orientational polarization of polar molecules in giant electrorheological fluids.
    Tan P; Tian WJ; Wu XF; Huang JY; Zhou LW; Huang JP
    J Phys Chem B; 2009 Jul; 113(27):9092-7. PubMed ID: 19530664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of high dielectric constant core on the activity of core-shell structure electrorheological fluid.
    Wu J; Xu G; Cheng Y; Liu F; Guo J; Cui P
    J Colloid Interface Sci; 2012 Jul; 378(1):36-43. PubMed ID: 22579514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected Effects of Activator Molecules' Polarity on the Electroreological Activity of Titanium Dioxide Nanopowders.
    Agafonov AV; Davydova OI; Krayev AS; Ivanova OS; Evdokimova OL; Gerasimova TV; Baranchikov AE; Kozik VV; Ivanov VK
    J Phys Chem B; 2017 Jul; 121(27):6732-6738. PubMed ID: 28613905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core/shell nanocomposite based on the local polarization and its electrorheological behavior.
    Wang B; Zhao X
    Langmuir; 2005 Jul; 21(14):6553-9. PubMed ID: 15982066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Electrorheological Properties of Elastomers Containing TiO₂/Urea Core-Shell Particles.
    Niu C; Dong X; Qi M
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24855-63. PubMed ID: 26492099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength.
    Yin JB; Zhao XP
    J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric constants of simple liquids: stockmayer and ellipsoidal fluids.
    Johnson LE; Barnes R; Draxler TW; Eichinger BE; Robinson BH
    J Phys Chem B; 2010 Jul; 114(25):8431-40. PubMed ID: 20527870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Interfacial Polarization-Induced Electrorheological Effect.
    Hao T
    J Colloid Interface Sci; 1998 Oct; 206(1):240-246. PubMed ID: 9761649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field.
    Ko YG; Lee HJ; Chun YJ; Choi US; Yoo KP
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1122-30. PubMed ID: 23336370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comment on 'Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities'.
    Zhang K; Choi BI; Choi HJ; Jhon MS
    Nanotechnology; 2010 Sep; 21(37):378001. PubMed ID: 20714053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DC dielectrophoretic particle-particle interactions and their relative motions.
    Ai Y; Qian S
    J Colloid Interface Sci; 2010 Jun; 346(2):448-54. PubMed ID: 20334869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrorheological toners for electrophotography.
    Otsubo Y; Suda Y
    J Colloid Interface Sci; 2002 Sep; 253(1):224-30. PubMed ID: 16290851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions.
    Di K; Zhu Y; Yang X; Li C
    J Colloid Interface Sci; 2006 Feb; 294(2):499-503. PubMed ID: 16125189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields.
    Tian Y; Zhang M; Jiang J; Pesika N; Zeng H; Israelachvili J; Meng Y; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011401. PubMed ID: 21405692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.