These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 21386489)
1. Microstructured superhydrorepellent surfaces: effect of drop pressure on fakir-state stability and apparent contact angles. Afferrante L; Carbone G J Phys Condens Matter; 2010 Aug; 22(32):325107. PubMed ID: 21386489 [TBL] [Abstract][Full Text] [Related]
2. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
4. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
5. Control over wettability of polyethylene glycol surfaces using capillary lithography. Suh KY; Jon S Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394 [TBL] [Abstract][Full Text] [Related]
6. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness". Zhao H; Park KC; Law KY Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132 [TBL] [Abstract][Full Text] [Related]
7. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State. Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812 [TBL] [Abstract][Full Text] [Related]
8. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Zheng QS; Yu Y; Zhao ZH Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993 [TBL] [Abstract][Full Text] [Related]
9. Microscopic description of a drop on a solid surface. Ruckenstein E; Berim GO Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270 [TBL] [Abstract][Full Text] [Related]
10. Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Forsberg PS; Priest C; Brinkmann M; Sedev R; Ralston J Langmuir; 2010 Jan; 26(2):860-5. PubMed ID: 19702258 [TBL] [Abstract][Full Text] [Related]
11. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles. Barbieri L; Wagner E; Hoffmann P Langmuir; 2007 Feb; 23(4):1723-34. PubMed ID: 17279650 [TBL] [Abstract][Full Text] [Related]
12. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity. Porcheron F; Monson PA Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079 [TBL] [Abstract][Full Text] [Related]
14. The effect of drop volume and micropillar shape on the apparent contact angle of ordered microstructured surfaces. Afferrante L; Carbone G Soft Matter; 2014 Jun; 10(22):3906-14. PubMed ID: 24643633 [TBL] [Abstract][Full Text] [Related]
15. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size. Liu B; Lange FF J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735 [TBL] [Abstract][Full Text] [Related]
16. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. Park CI; Jeong HE; Lee SH; Cho HS; Suh KY J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991 [TBL] [Abstract][Full Text] [Related]
17. Nanodrop on a nanorough solid surface: density functional theory considerations. Berim GO; Ruckenstein E J Chem Phys; 2008 Jul; 129(1):014708. PubMed ID: 18624497 [TBL] [Abstract][Full Text] [Related]
18. Super liquid-repellent layers: The smaller the better. Butt HJ; Vollmer D; Papadopoulos P Adv Colloid Interface Sci; 2015 Aug; 222():104-9. PubMed ID: 24996450 [TBL] [Abstract][Full Text] [Related]
19. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale. Leroy F; Müller-Plathe F Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209 [TBL] [Abstract][Full Text] [Related]
20. The dynamic interaction of water with four dental impression materials during cure. Hosseinpour D; Berg JC J Prosthodont; 2009 Jun; 18(4):292-300. PubMed ID: 19210607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]