These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2682 related articles for article (PubMed ID: 21386491)

  • 1. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transport properties of atomic carbon nanowires between graphene electrodes.
    Shen L; Zeng M; Yang SW; Zhang C; Wang X; Feng Y
    J Am Chem Soc; 2010 Aug; 132(33):11481-6. PubMed ID: 20677763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental optical processes in armchair carbon nanotubes.
    Hároz EH; Duque JG; Tu X; Zheng M; Hight Walker AR; Hauge RH; Doorn SK; Kono J
    Nanoscale; 2013 Feb; 5(4):1411-39. PubMed ID: 23340668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy of fullerenes and fullerene-nanotube composites.
    Kuzmany H; Pfeiffer R; Hulman M; Kramberger C
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2375-406. PubMed ID: 15482984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Films of bare single-walled carbon nanotubes from superacids with tailored electronic and photoluminescence properties.
    Saha A; Ghosh S; Weisman RB; Martí AA
    ACS Nano; 2012 Jun; 6(6):5727-34. PubMed ID: 22681339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphane nanotubes.
    Wen XD; Yang T; Hoffmann R; Ashcroft NW; Martin RL; Rudin SP; Zhu JX
    ACS Nano; 2012 Aug; 6(8):7142-50. PubMed ID: 22747198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes.
    Blackburn JL; Barnes TM; Beard MC; Kim YH; Tenent RC; McDonald TJ; To B; Coutts TJ; Heben MJ
    ACS Nano; 2008 Jun; 2(6):1266-74. PubMed ID: 19206344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of transparent and conductive thin films of single-walled carbon nanotubes.
    Maeda Y; Komoriya K; Sode K; Higo J; Nakamura T; Yamada M; Hasegawa T; Akasaka T; Saito T; Lu J; Nagase S
    Nanoscale; 2011 Apr; 3(4):1904-9. PubMed ID: 21409241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
    Tapasztó L; Dobrik G; Lambin P; Biró LP
    Nat Nanotechnol; 2008 Jul; 3(7):397-401. PubMed ID: 18654562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

  • 15. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films.
    Bergin SM; Chen YH; Rathmell AR; Charbonneau P; Li ZY; Wiley BJ
    Nanoscale; 2012 Mar; 4(6):1996-2004. PubMed ID: 22349106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-free water-processable photoconductive all-carbon composite.
    Tung VC; Huang JH; Tevis I; Kim F; Kim J; Chu CW; Stupp SI; Huang J
    J Am Chem Soc; 2011 Apr; 133(13):4940-7. PubMed ID: 21391674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.
    Tison Y; Giusca CE; Sloan J; Silva SR
    ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping of metal atoms in vacancies of carbon nanotubes and graphene.
    Rodríguez-Manzo JA; Cretu O; Banhart F
    ACS Nano; 2010 Jun; 4(6):3422-8. PubMed ID: 20499848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 135.