These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Low-frequency Raman and Brillouin spectroscopy from graphite, diamond and diamond-like carbons, fullerenes and nanotubes. Beghi MG; Bottani CE Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2513-35. PubMed ID: 15482989 [TBL] [Abstract][Full Text] [Related]
23. Clusters of classical water models. Kiss PT; Baranyai A J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683 [TBL] [Abstract][Full Text] [Related]
24. Studying disorder in graphite-based systems by Raman spectroscopy. Pimenta MA; Dresselhaus G; Dresselhaus MS; Cançado LG; Jorio A; Saito R Phys Chem Chem Phys; 2007 Mar; 9(11):1276-91. PubMed ID: 17347700 [TBL] [Abstract][Full Text] [Related]
25. Self-assembly of graphene nanostructures on nanotubes. Patra N; Song Y; Král P ACS Nano; 2011 Mar; 5(3):1798-804. PubMed ID: 21341759 [TBL] [Abstract][Full Text] [Related]
26. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene. Yang XX; Li JW; Zhou ZF; Wang Y; Yang LW; Zheng WT; Sun CQ Nanoscale; 2012 Jan; 4(2):502-10. PubMed ID: 22105904 [TBL] [Abstract][Full Text] [Related]
27. Solution assembly of organized carbon nanotube networks for thin-film transistors. Lemieux MC; Sok S; Roberts ME; Opatkiewicz JP; Liu D; Barman SN; Patil N; Mitra S; Bao Z ACS Nano; 2009 Dec; 3(12):4089-97. PubMed ID: 19924882 [TBL] [Abstract][Full Text] [Related]
32. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes. Bichoutskaia E; Pyper NC J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212 [TBL] [Abstract][Full Text] [Related]
33. The carbon nanocosmos: novel materials for the twenty-first century. Terrones M; Terrones H Philos Trans A Math Phys Eng Sci; 2003 Dec; 361(1813):2789-806. PubMed ID: 14667298 [TBL] [Abstract][Full Text] [Related]
34. Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. Gautam UK; Fang X; Bando Y; Zhan J; Golberg D ACS Nano; 2008 May; 2(5):1015-21. PubMed ID: 19206499 [TBL] [Abstract][Full Text] [Related]
35. A sightseeing tour in the world of clusters--serendipity and scientific progress. Rosén A J Mol Graph Model; 2001; 19(2):236-43. PubMed ID: 11391875 [TBL] [Abstract][Full Text] [Related]
36. Transport diffusion of gases is rapid in flexible carbon nanotubes. Chen H; Johnson JK; Sholl DS J Phys Chem B; 2006 Feb; 110(5):1971-5. PubMed ID: 16471771 [TBL] [Abstract][Full Text] [Related]
37. Modeling collective behavior of molecules in nanoscale direct deposition processes. Lee NK; Hong S J Chem Phys; 2006 Mar; 124(11):114711. PubMed ID: 16555914 [TBL] [Abstract][Full Text] [Related]
38. Raman study on the g mode of graphene for determination of edge orientation. Cong C; Yu T; Wang H ACS Nano; 2010 Jun; 4(6):3175-80. PubMed ID: 20446715 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and property characterization of c(69)n azafullerene encapsulated single-walled carbon nanotubes. Li Y; Kaneko T; Miyanaga S; Hatakeyama R ACS Nano; 2010 Jun; 4(6):3522-6. PubMed ID: 20509615 [TBL] [Abstract][Full Text] [Related]
40. Effects of layer stacking on the combination Raman modes in graphene. Rao R; Podila R; Tsuchikawa R; Katoch J; Tishler D; Rao AM; Ishigami M ACS Nano; 2011 Mar; 5(3):1594-9. PubMed ID: 21204569 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]