These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Phase-field-crystal methodology for modeling of structural transformations. Greenwood M; Rottler J; Provatas N Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031601. PubMed ID: 21517507 [TBL] [Abstract][Full Text] [Related]
3. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry. Noya EG; Vega C; Doye JP; Louis AA J Chem Phys; 2010 Jun; 132(23):234511. PubMed ID: 20572725 [TBL] [Abstract][Full Text] [Related]
4. Determination of fluid--solid transitions in model protein solutions using the histogram reweighting method and expanded ensemble simulations. Chang J; Lenhoff AM; Sandler SI J Chem Phys; 2004 Feb; 120(6):3003-14. PubMed ID: 15268448 [TBL] [Abstract][Full Text] [Related]
5. Toward a robust and general molecular simulation method for computing solid-liquid coexistence. Eike DM; Brennecke JF; Maginn EJ J Chem Phys; 2005 Jan; 122(1):14115. PubMed ID: 15638650 [TBL] [Abstract][Full Text] [Related]
7. Plastic crystal phases of simple water models. Aragones JL; Vega C J Chem Phys; 2009 Jun; 130(24):244504. PubMed ID: 19566163 [TBL] [Abstract][Full Text] [Related]
8. Crystal families and systems in higher dimensions, and geometrical symbols of their point groups. I. Crystal families in five-dimensional space with two-, three-, four- and sixfold symmetries. Veysseyre R; Weigel D; Phan T Acta Crystallogr A; 2008 Nov; 64(Pt 6):675-86. PubMed ID: 18931423 [TBL] [Abstract][Full Text] [Related]
9. Phase diagram of model anisotropic particles with octahedral symmetry. Noya EG; Vega C; Doye JP; Louis AA J Chem Phys; 2007 Aug; 127(5):054501. PubMed ID: 17688343 [TBL] [Abstract][Full Text] [Related]
10. Crystal nucleation in the hard-sphere system revisited: a critical test of theoretical approaches. Tóth GI; Gránásy L J Phys Chem B; 2009 Apr; 113(15):5141-8. PubMed ID: 19320450 [TBL] [Abstract][Full Text] [Related]
11. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region. Tóth GI; Gránásy L J Chem Phys; 2007 Aug; 127(7):074709. PubMed ID: 17718629 [TBL] [Abstract][Full Text] [Related]
12. Orientation tuning properties of simple cells in area V1 derived from an approximate analysis of nonlinear neural field models. Wennekers T Neural Comput; 2001 Aug; 13(8):1721-47. PubMed ID: 11506668 [TBL] [Abstract][Full Text] [Related]
13. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase. Aragones JL; Conde MM; Noya EG; Vega C Phys Chem Chem Phys; 2009 Jan; 11(3):543-55. PubMed ID: 19283272 [TBL] [Abstract][Full Text] [Related]
14. Exploiting classical nucleation theory for reverse self-assembly. Miller WL; Cacciuto A J Chem Phys; 2010 Dec; 133(23):234108. PubMed ID: 21186859 [TBL] [Abstract][Full Text] [Related]
15. Solid-liquid interfacial energies and equilibrium shapes of nanocrystals. Backofen R; Voigt A J Phys Condens Matter; 2009 Nov; 21(46):464109. PubMed ID: 21715873 [TBL] [Abstract][Full Text] [Related]
16. Crystal families and systems in higher dimensions, and geometrical symbols of their point groups. II. Cubic families in five- and n-dimensional spaces. Weigel D; Phan T; Veysseyre R Acta Crystallogr A; 2008 Nov; 64(Pt 6):687-97. PubMed ID: 18931424 [TBL] [Abstract][Full Text] [Related]
17. Determining the three-phase coexistence line in methane hydrates using computer simulations. Conde MM; Vega C J Chem Phys; 2010 Aug; 133(6):064507. PubMed ID: 20707575 [TBL] [Abstract][Full Text] [Related]
18. Transient ordering in a quasi-two-dimensional liquid near freezing. Sheu AS; Rice S J Chem Phys; 2008 Jun; 128(24):244517. PubMed ID: 18601358 [TBL] [Abstract][Full Text] [Related]
19. Atomistic simulation of solid-liquid coexistence for molecular systems: application to triazole and benzene. Eike DM; Maginn EJ J Chem Phys; 2006 Apr; 124(16):164503. PubMed ID: 16674142 [TBL] [Abstract][Full Text] [Related]
20. Modified phase-field-crystal model for solid-liquid phase transitions. Guo C; Wang J; Wang Z; Li J; Guo Y; Tang S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013309. PubMed ID: 26274309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]