These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 21386558)

  • 1. Absorption effects on plasmon polaritons in quasiperiodic photonic superlattices containing a metamaterial.
    Reyes-Gómez E; Raigoza N; Cavalcanti SB; de Carvalho CA; Oliveira LE
    J Phys Condens Matter; 2010 Sep; 22(38):385901. PubMed ID: 21386558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anderson localization and Brewster anomalies in photonic disordered quasiperiodic lattices.
    Reyes-Gómez E; Bruno-Alfonso A; Cavalcanti SB; Oliveira LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036604. PubMed ID: 22060519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero-(n) non-Bragg gap plasmon-polariton modes and omni-reflectance in 1D metamaterial photonic superlattices.
    Agudelo-Arango C; Mejía-Salazar JR; Porras-Montenegro N; Reyes-Gómez E; Oliveira LE
    J Phys Condens Matter; 2011 Jun; 23(21):215003. PubMed ID: 21555838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal.
    Gong Y; Liu X; Wang L; Lu H; Wang G
    Opt Express; 2011 May; 19(10):9759-69. PubMed ID: 21643233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton polaritons in one-dimensional metal-semiconductor photonic crystals.
    Márquez-Islas R; Flores-Desirena B; Pérez-Rodríguez F
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6584-8. PubMed ID: 19205244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon polaritons in photonic metamaterial superlattices: absorption effects.
    Mogilevtsev D; Reyes-Gómez E; Cavalcanti SB; de Carvalho CA; Oliveira LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):047601. PubMed ID: 20481864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk plasmon polariton-gap soliton-induced transparency in one-dimensional Kerr-metamaterial superlattices.
    Cavalcanti SB; Brandão PA; Bruno-Alfonso A; Oliveira LE
    Opt Lett; 2014 Jan; 39(1):178-81. PubMed ID: 24365852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning band structures of photonic multilayers with positive and negative refractive index materials according to generalized Fibonacci and Thue-Morse sequences.
    Silva BP; Costa CH
    J Phys Condens Matter; 2020 Mar; 32(13):135703. PubMed ID: 31801114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Bragg-gap solitons in one-dimensional Kerr-metamaterial Fibonacci heterostructures.
    Reyes-Gómez E; Cavalcanti SB; Oliveira LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063205. PubMed ID: 26172816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulk plasmon-polariton gap solitons in defective metamaterial photonic superlattices.
    Gómez FR; Mejía-Salazar JR
    Opt Lett; 2015 Nov; 40(21):5034-7. PubMed ID: 26512512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the nonreciprocal properties of one-dimensional cylindrical magnetized plasma photonic crystals.
    Wang Q; Wang P; Wan B; Zhang H
    J Opt Soc Am A Opt Image Sci Vis; 2021 Jun; 38(6):897-907. PubMed ID: 34143159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials.
    Bria D; Djafari-Rouhani B; Akjouj A; Dobrzynski L; Vigneron JP; El-Boudouti EH; Nougaoui A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066613. PubMed ID: 15244770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of photonic band structure in a one-dimensional photonic crystal containing single-negative materials.
    Yeh DW; Wu CJ
    Opt Express; 2009 Sep; 17(19):16666-80. PubMed ID: 19770882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation and localization of electromagnetic waves in quasiperiodic serial loop structures.
    Aynaou H; El Boudouti EH; El Hassouani Y; Akjouj A; Djafari-Rouhani B; Vasseur J; Benomar A; Velasco VR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056601. PubMed ID: 16383765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab.
    Christ A; Tikhodeev SG; Gippius NA; Kuhl J; Giessen H
    Phys Rev Lett; 2003 Oct; 91(18):183901. PubMed ID: 14611284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of surface plasmon polaritons near the photonic-bandgap edge for interphotonic band switching devices.
    Onuki T; Ohtera Y; Tokizaki T
    J Microsc; 2008 Mar; 229(Pt 3):447-51. PubMed ID: 18331493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-confined surface plasmon polaritons for sensing applications in the near-infrared.
    Gan CH; Lalanne P
    Opt Lett; 2010 Feb; 35(4):610-2. PubMed ID: 20160834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of surface plasmon polaritons and photonic modes in light absorption by thin-film solar cells patterned with metallic nanogratings.
    Chen P; Zhong Y; Liu H
    Opt Lett; 2013 Feb; 38(4):573-5. PubMed ID: 23455140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.
    Singh BK; Pandey PC
    Appl Opt; 2016 Jul; 55(21):5684-92. PubMed ID: 27463924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide-angle high-efficiency absorption of graphene empowered by an angle-insensitive Tamm plasmon polariton.
    Wu F; Xiao S
    Opt Express; 2023 Feb; 31(4):5722-5735. PubMed ID: 36823845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.