These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 21386558)

  • 21. Field profiles of bulk plasmon polariton modes in layered systems containing a metamaterial.
    Bruno-Alfonso A; Reyes-Gómez E; Cavalcanti SB; Oliveira LE
    J Phys Condens Matter; 2012 Feb; 24(4):045302. PubMed ID: 22218808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon.
    Moretti L; Rea I; Rotiroti L; Rendina I; Abbate G; Marino A; De Stefano L
    Opt Express; 2006 Jun; 14(13):6264-72. PubMed ID: 19516799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Giant Second-Harmonic Generation in Cantor-like Metamaterial Photonic Superlattices.
    Reyes Gómez F; Porras-Montenegro N; Oliveira ON; Mejía-Salazar JR
    ACS Omega; 2018 Dec; 3(12):17922-17927. PubMed ID: 31458384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmon-resonance-induced enhancement of the reflection band in a one-dimensional metal nanocomposite photonic crystal.
    Husaini S; Deych L; Menon VM
    Opt Lett; 2011 Apr; 36(8):1368-70. PubMed ID: 21499359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential.
    Tanese D; Gurevich E; Baboux F; Jacqmin T; Lemaître A; Galopin E; Sagnes I; Amo A; Bloch J; Akkermans E
    Phys Rev Lett; 2014 Apr; 112(14):146404. PubMed ID: 24765996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perfect light transmission in Fibonacci arrays of dielectric multilayers.
    Nava R; Tagüeña-Martínez J; Del Río JA; Naumis GG
    J Phys Condens Matter; 2009 Apr; 21(15):155901. PubMed ID: 21825374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metric-signature topological transitions in dispersive metamaterials.
    Reyes-Gómez E; Cavalcanti SB; Oliveira LE; de Carvalho CA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033202. PubMed ID: 24730960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuned switching of surface waves by a liquid crystal cap layer in one-dimensional photonic crystals.
    Hajian H; Rezaei B; Vala AS; Kalafi M
    Appl Opt; 2012 May; 51(15):2909-16. PubMed ID: 22614593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photonic band gap structure containing metamaterial with negative permittivity and permeability.
    Nefedov IS; Tretyakov SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036611. PubMed ID: 12366284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial.
    Bai Y; Zhao L; Ju D; Jiang Y; Liu L
    Opt Express; 2015 Apr; 23(7):8670-80. PubMed ID: 25968705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable multi-wavelength absorption in mid-IR region based on a hybrid patterned graphene-hBN structure.
    Deng G; Song X; Dereshgi SA; Xu H; Aydin K
    Opt Express; 2019 Aug; 27(16):23576-23584. PubMed ID: 31510632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enlarging the negative-index bandwidth of optical metamaterials by hybridized plasmon resonances.
    Ortuño R; García-Meca C; Rodríguez-Fortuño FJ; Martínez A
    Opt Lett; 2010 Dec; 35(24):4205-7. PubMed ID: 21165138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybridization of Surface Plasmon Polariton and Photonic Crystal Modes in Bragg Mirror with Periodically Profiled Metal Film.
    Sosnova MV; Mamykin SV; Korovin AV; Dmitruk NL
    Nanoscale Res Lett; 2016 Dec; 11(1):144. PubMed ID: 26979722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials.
    Panoiu NC; Osgood RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016611. PubMed ID: 12935274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electromagnetic wave propagation in quasi-periodic photonic circuits.
    El Boudouti EH; Hassouani YE; Aynaou H; Djafari-Rouhani B; Akjouj A; Velasco VR
    J Phys Condens Matter; 2007 Jun; 19(24):246217. PubMed ID: 21694060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capsize of polarization in dilute photonic crystals.
    Gevorkian Z; Hakhoumian A; Gasparian V; Cuevas E
    Sci Rep; 2017 Nov; 7(1):16593. PubMed ID: 29185471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals.
    Sang HY; Li ZY; Gu BY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066611. PubMed ID: 15697530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmon-polariton band structures of asymmetric T-shaped plasmonic gratings.
    Abbas MN; Chang YC; Shih MH
    Opt Express; 2010 Feb; 18(3):2509-14. PubMed ID: 20174078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear resonance-enhanced excitation of surface plasmon polaritons.
    Xue CH; Jiang HT; Chen H
    Opt Lett; 2011 Mar; 36(6):855-7. PubMed ID: 21403707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical investigation of mode characteristics of nanoscale surface plasmon-polaritons using a pseudospectral scheme.
    Huang CC
    Opt Express; 2010 Nov; 18(23):23711-26. PubMed ID: 21164715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.