These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21386577)

  • 1. RMCSANS--modelling the inter-particle term of small angle scattering data via the reverse Monte Carlo method.
    Gereben O; Pusztai L; McGreevy RL
    J Phys Condens Matter; 2010 Oct; 22(40):404216. PubMed ID: 21386577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First example of multi-scale reverse Monte Carlo modeling for small-angle scattering experimental data using reverse mapping from coarse-grained particles to atoms.
    Hagita K; McGreevy RL; Arai T; Inui M; Matsuda K; Tamura K
    J Phys Condens Matter; 2010 Oct; 22(40):404215. PubMed ID: 21386576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the structural properties of simple aldehydes: a Monte Carlo and small-angle X-ray scattering study.
    Lajovic A; Tomsic M; Fritz-Popovski G; Vlcek L; Jamnik A
    J Phys Chem B; 2009 Jul; 113(28):9429-35. PubMed ID: 19545124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach towards understanding the structure of complex molecular systems: the case of lower aliphatic alcohols.
    Vrhovšek A; Gereben O; Pothoczki S; Tomšič M; Jamnik A; Kohara S; Pusztai L
    J Phys Condens Matter; 2010 Oct; 22(40):404214. PubMed ID: 21386575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo-based rigid body modelling of large protein complexes against small angle scattering data.
    Meesters C; Pairet B; Rabenhorst A; Decker H; Jaenicke E
    Comput Biol Chem; 2010 Jun; 34(3):158-64. PubMed ID: 20598639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Milk gelation studied with small angle neutron scattering techniques and Monte Carlo simulations.
    van Heijkamp LF; de Schepper IM; Strobl M; Tromp RH; Heringa JR; Bouwman WG
    J Phys Chem A; 2010 Feb; 114(7):2412-26. PubMed ID: 20121284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse Monte Carlo modeling of amorphous structures in phase-change In0.21Sb0.79 thin film.
    Arai T; Tani K; McGreevy RL
    J Phys Condens Matter; 2010 Oct; 22(40):404204. PubMed ID: 21386565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The liquid structure of haloforms CHCl3 and CHBr3.
    Pothoczki S; Temleitner L; Kohara S; Jóvári P; Pusztai L
    J Phys Condens Matter; 2010 Oct; 22(40):404211. PubMed ID: 21386572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A software tool for 2D/3D visualization and analysis of phase-space data generated by Monte Carlo modelling of medical linear accelerators.
    Neicu T; Aljarrah KM; Jiang SB
    Phys Med Biol; 2005 Oct; 50(20):N257-67. PubMed ID: 16204867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration structure in concentrated aqueous lithium chloride solutions: a reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data.
    Harsányi I; Pusztai L
    J Chem Phys; 2012 Nov; 137(20):204503. PubMed ID: 23206015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The First Eighteen Years of Reverse Monte Carlo Modelling, a workshop held in Budapest, Hungary (28-30th September 2006).
    Keen DA; Pusztai L
    J Phys Condens Matter; 2007 Aug; 19(33):330301. PubMed ID: 21694123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method.
    Jain SK; Pellenq RJ; Pikunic JP; Gubbins KE
    Langmuir; 2006 Nov; 22(24):9942-8. PubMed ID: 17106983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the atomic structure of Al92U8 metallic glass.
    Michalik S; Bednarcik J; Jóvári P; Honkimäki V; Webb A; Franz H; Fazakas E; Varga LK
    J Phys Condens Matter; 2010 Oct; 22(40):404209. PubMed ID: 21386570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PoDFluX: a new Monte Carlo ray-tracing model for powder diffraction and fluorescence.
    Hansford GM
    Rev Sci Instrum; 2009 Jul; 80(7):073903. PubMed ID: 19655961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of the muscle protein complex 4Ca2+.troponin C.troponin I. Monte Carlo modeling analysis of small-angle X-ray data.
    Olah GA; Trewhella J
    Basic Life Sci; 1996; 64():137-47. PubMed ID: 9031509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainties beyond statistics in Monte Carlo simulations.
    Hughes HG
    Radiat Prot Dosimetry; 2007; 126(1-4):45-51. PubMed ID: 17766264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of small-angle x-ray scattering data of a Raney-type Ni catalyst with computer simulation.
    Tóth G; Körmendi K; Vrabecz A; Bóta A
    J Chem Phys; 2004 Dec; 121(21):10634-40. PubMed ID: 15549946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the structure of aqueous cesium chloride solutions by combining diffraction experiments, molecular dynamics simulations, and reverse Monte Carlo modeling.
    Mile V; Pusztai L; Dominguez H; Pizio O
    J Phys Chem B; 2009 Aug; 113(31):10760-9. PubMed ID: 19588949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uranium surroundings in borosilicate glass from neutron and x-ray diffraction and RMC modelling.
    Fábián M; Proffen T; Ruett U; Veress E; Sváb E
    J Phys Condens Matter; 2010 Oct; 22(40):404206. PubMed ID: 21386567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical validation of IFT in the analysis of protein-surfactant complexes with SAXS and SANS.
    Franklin JM; Surampudi LN; Ashbaugh HS; Pozzo DC
    Langmuir; 2012 Aug; 28(34):12593-600. PubMed ID: 22861495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.