These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 21386620)
1. Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces. Termentzidis K; Chantrenne P; Duquesne JY; Saci A J Phys Condens Matter; 2010 Dec; 22(47):475001. PubMed ID: 21386620 [TBL] [Abstract][Full Text] [Related]
2. Anisotropy of the thermal conductivity in GaAs/AlAs superlattices. Luckyanova MN; Johnson JA; Maznev AA; Garg J; Jandl A; Bulsara MT; Fitzgerald EA; Nelson KA; Chen G Nano Lett; 2013 Sep; 13(9):3973-7. PubMed ID: 23952943 [TBL] [Abstract][Full Text] [Related]
3. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice. Hofmann F; Garg J; Maznev AA; Jandl A; Bulsara M; Fitzgerald EA; Chen G; Nelson KA J Phys Condens Matter; 2013 Jul; 25(29):295401. PubMed ID: 23817884 [TBL] [Abstract][Full Text] [Related]
4. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. Martin PN; Aksamija Z; Pop E; Ravaioli U Nano Lett; 2010 Apr; 10(4):1120-4. PubMed ID: 20222669 [TBL] [Abstract][Full Text] [Related]
5. Effects of a shell on the electronic properties of nanowire superlattices. Niquet YM Nano Lett; 2007 Apr; 7(4):1105-9. PubMed ID: 17385931 [TBL] [Abstract][Full Text] [Related]
10. Noise-induced current switching in semiconductor superlattices: observation of nonexponential kinetics in a high-dimensional system. Bomze Y; Hey R; Grahn HT; Teitsworth SW Phys Rev Lett; 2012 Jul; 109(2):026801. PubMed ID: 23030192 [TBL] [Abstract][Full Text] [Related]
11. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs. Zhang Y; Ning Y; Zhang L; Zhang J; Zhang J; Wang Z; Zhang J; Zeng Y; Wang L Opt Express; 2011 Jun; 19(13):12569-81. PubMed ID: 21716498 [TBL] [Abstract][Full Text] [Related]
12. Influence of metal deposition on exciton-surface plasmon polariton coupling in GaAs/AlAs/GaAs core-shell nanowires studied with time-resolved cathodoluminescence. Estrin Y; Rich DH; Kretinin AV; Shtrikman H Nano Lett; 2013 Apr; 13(4):1602-10. PubMed ID: 23516975 [TBL] [Abstract][Full Text] [Related]
13. Lowering liquid-solid interfacial thermal resistance with nanopatterned surfaces. Issa KM; Mohamad AA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031602. PubMed ID: 22587103 [TBL] [Abstract][Full Text] [Related]
14. Peptides on GaAs surfaces: comparison between features generated by microcontact printing and dip-pen nanolithography. Cho Y; Ivanisevic A Langmuir; 2006 Oct; 22(21):8670-4. PubMed ID: 17014103 [TBL] [Abstract][Full Text] [Related]
15. Secondary electron emission contrast of quantum wells in GaAs p-i-n junctions. Grunbaum E; Barkay Z; Shapira Y; Barnham KW; Bushnell DB; Ekins-Daukes NJ; Mazzer M; Wilshaw P Microsc Microanal; 2009 Apr; 15(2):125-9. PubMed ID: 19284894 [TBL] [Abstract][Full Text] [Related]
16. A molecular dynamics-stochastic model for thermal conductivity of nanofluids and its experimental validation. Ghosh MM; Roy S; Pabi SK; Ghosh S J Nanosci Nanotechnol; 2011 Mar; 11(3):2196-207. PubMed ID: 21449369 [TBL] [Abstract][Full Text] [Related]
17. Self-assembly of concentric quantum double rings. Mano T; Kuroda T; Sanguinetti S; Ochiai T; Tateno T; Kim J; Noda T; Kawabe M; Sakoda K; Kido G; Koguchi N Nano Lett; 2005 Mar; 5(3):425-8. PubMed ID: 15755088 [TBL] [Abstract][Full Text] [Related]