BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21386970)

  • 1. Segregation of fluorescent membrane lipids into distinct micrometric domains: evidence for phase compartmentation of natural lipids?
    D'auria L; Van der Smissen P; Bruyneel F; Courtoy PJ; Tyteca D
    PLoS One; 2011 Feb; 6(2):e17021. PubMed ID: 21386970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three unrelated sphingomyelin analogs spontaneously cluster into plasma membrane micrometric domains.
    Tyteca D; D'Auria L; Der Smissen PV; Medts T; Carpentier S; Monbaliu JC; de Diesbach P; Courtoy PJ
    Biochim Biophys Acta; 2010 May; 1798(5):909-27. PubMed ID: 20123084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micrometric segregation of fluorescent membrane lipids: relevance for endogenous lipids and biogenesis in erythrocytes.
    D'Auria L; Fenaux M; Aleksandrowicz P; Van Der Smissen P; Chantrain C; Vermylen C; Vikkula M; Courtoy PJ; Tyteca D
    J Lipid Res; 2013 Apr; 54(4):1066-76. PubMed ID: 23322884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactins modulate the lateral organization of fluorescent membrane polar lipids: a new tool to study drug:membrane interaction and assessment of the role of cholesterol and drug acyl chain length.
    D'Auria L; Deleu M; Dufour S; Mingeot-Leclercq MP; Tyteca D
    Biochim Biophys Acta; 2013 Sep; 1828(9):2064-73. PubMed ID: 23685123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous sphingomyelin segregates into submicrometric domains in the living erythrocyte membrane.
    Carquin M; Pollet H; Veiga-da-Cunha M; Cominelli A; Van Der Smissen P; N'kuli F; Emonard H; Henriet P; Mizuno H; Courtoy PJ; Tyteca D
    J Lipid Res; 2014 Jul; 55(7):1331-42. PubMed ID: 24826836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs.
    Kinoshita M; Suzuki KG; Matsumori N; Takada M; Ano H; Morigaki K; Abe M; Makino A; Kobayashi T; Hirosawa KM; Fujiwara TK; Kusumi A; Murata M
    J Cell Biol; 2017 Apr; 216(4):1183-1204. PubMed ID: 28330937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts.
    Koval M; Pagano RE
    J Cell Biol; 1989 Jun; 108(6):2169-81. PubMed ID: 2738091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells.
    Marks DL; Bittman R; Pagano RE
    Histochem Cell Biol; 2008 Nov; 130(5):819-32. PubMed ID: 18820942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent analogues of plasma membrane sphingolipids are sorted to different intracellular compartments in astrocytes; Harmful effects of chronic ethanol exposure on sphingolipid trafficking and metabolism.
    Tomás M; Durán JM; Lázaro-Diéguez F; Babià T; Renau-Piqueras J; Egea G
    FEBS Lett; 2004 Apr; 563(1-3):59-65. PubMed ID: 15063723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segregation of glucosylceramide and sphingomyelin occurs in the apical to basolateral transcytotic route in HepG2 cells.
    van IJzendoorn SC; Zegers MM; Kok JW; Hoekstra D
    J Cell Biol; 1997 Apr; 137(2):347-57. PubMed ID: 9128247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization.
    Mound A; Lozanova V; Warnon C; Hermant M; Robic J; Guere C; Vie K; Lambert de Rouvroit C; Tyteca D; Debacq-Chainiaux F; Poumay Y
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):958-971. PubMed ID: 28599891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells.
    van Meer G; Stelzer EH; Wijnaendts-van-Resandt RW; Simons K
    J Cell Biol; 1987 Oct; 105(4):1623-35. PubMed ID: 3667693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterol carrier protein-2 expression alters sphingolipid metabolism in transfected mouse L-cell fibroblasts.
    Milis DG; Moore MK; Atshaves BP; Schroeder F; Jefferson JR
    Mol Cell Biochem; 2006 Feb; 283(1-2):57-66. PubMed ID: 16444586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internalization and sorting of plasma membrane sphingolipid analogues in differentiating oligodendrocytes.
    Watanabe R; Asakura K; Rodriguez M; Pagano RE
    J Neurochem; 1999 Oct; 73(4):1375-83. PubMed ID: 10501180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning of pyrene-labeled phospho- and sphingolipids between ordered and disordered bilayer domains.
    Koivusalo M; Alvesalo J; Virtanen JA; Somerharju P
    Biophys J; 2004 Feb; 86(2):923-35. PubMed ID: 14747328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly formation of minor dihydrosphingomyelin in sphingomyelin-rich ordered membrane domains.
    Kinoshita M; Kyo T; Matsumori N
    Sci Rep; 2020 Jul; 10(1):11794. PubMed ID: 32678223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endocytosis and intracellular processing of BODIPY-sphingomyelin by murine CATH.a neurons.
    Nusshold C; Uellen A; Bernhart E; Hammer A; Damm S; Wintersperger A; Reicher H; Hermetter A; Malle E; Sattler W
    Biochim Biophys Acta; 2013 Dec; 1831(12):1665-78. PubMed ID: 23973266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase.
    Parkin ET; Turner AJ; Hooper NM
    Biochem J; 2001 Aug; 358(Pt 1):209-16. PubMed ID: 11485569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid dynamics in boar sperm studied by advanced fluorescence imaging techniques.
    Schröter F; Jakop U; Teichmann A; Haralampiev I; Tannert A; Wiesner B; Müller P; Müller K
    Eur Biophys J; 2016 Mar; 45(2):149-63. PubMed ID: 26481472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Relationship and Functional Relevance of Three Lipid Domain Populations at the Erythrocyte Surface.
    Conrard L; Stommen A; Cloos AS; Steinkühler J; Dimova R; Pollet H; Tyteca D
    Cell Physiol Biochem; 2018; 51(4):1544-1565. PubMed ID: 30497064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.