BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 21387323)

  • 1. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin.
    Brejnholt SM; Dionisio G; Glitsoe V; Skov LK; Brinch-Pedersen H
    J Sci Food Agric; 2011 Jun; 91(8):1398-405. PubMed ID: 21387323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The presence of inositol phosphates in gastric pig digesta is affected by time after feeding a nonfermented or fermented liquid wheat- and barley-based diet.
    Blaabjerg K; Jørgensen H; Tauson AH; Poulsen HD
    J Anim Sci; 2011 Oct; 89(10):3153-62. PubMed ID: 21551342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase.
    Bohn L; Josefsen L; Meyer AS; Rasmussen SK
    J Agric Food Chem; 2007 Sep; 55(18):7547-52. PubMed ID: 17696444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between protein, phytate, and microbial phytase. In vitro studies.
    Kies AK; De Jonge LH; Kemme PA; Jongbloed AW
    J Agric Food Chem; 2006 Mar; 54(5):1753-8. PubMed ID: 16506829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative enzymatic hydrolysis of phytate in various animal feedstuff with two different phytases.
    Park SC; Choi YW; Oh TK
    J Vet Med Sci; 1999 Nov; 61(11):1257-9. PubMed ID: 10593587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supplementation of alkaline phytase (Ds11) in whole-wheat bread reduces phytate content and improves mineral solubility.
    Park YJ; Park J; Park KH; Oh BC; Auh JH
    J Food Sci; 2011 Aug; 76(6):C791-4. PubMed ID: 21623782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo degradation of myo-inositol hexakisphosphate by a phytase from Citrobacter braakii.
    Pontoppidan K; Glitsoe V; Guggenbuhl P; Quintana AP; Nunes CS; Pettersson D; Sandberg AS
    Arch Anim Nutr; 2012 Dec; 66(6):431-44. PubMed ID: 23098167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P and Ca digestibility is increased in broiler diets supplemented with the high-phytase HIGHPHY wheat.
    Scholey D; Burton E; Morgan N; Sanni C; Madsen CK; Dionisio G; Brinch-Pedersen H
    Animal; 2017 Sep; 11(9):1457-1463. PubMed ID: 28318476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation.
    Reale A; Konietzny U; Coppola R; Sorrentino E; Greiner R
    J Agric Food Chem; 2007 Apr; 55(8):2993-7. PubMed ID: 17373819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of exogenous phytase on feed inositol phosphate hydrolysis in an in vitro rumen fluid buffer system.
    Brask-Pedersen DN; Glitsø LV; Skov LK; Lund P; Sehested J
    J Dairy Sci; 2011 Feb; 94(2):951-9. PubMed ID: 21257063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of phytate by high-phytase Saccharomyces cerevisiae strains during simulated gastrointestinal digestion.
    Haraldsson AK; Veide J; Andlid T; Alminger ML; Sandberg AS
    J Agric Food Chem; 2005 Jun; 53(13):5438-44. PubMed ID: 15969530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment.
    Gujar PD; Bhavsar KP; Khire JM
    J Sci Food Agric; 2013 Jul; 93(9):2242-7. PubMed ID: 23355258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus contents. I. Effects on bird performance and toe ash.
    Cabahug S; Ravindran V; Selle PH; Bryden WL
    Br Poult Sci; 1999 Dec; 40(5):660-6. PubMed ID: 10670679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of microbial phytase, produced by solid-state fermentation, on the performance and nutrient utilisation of broilers fed maize- and wheat-based diets.
    Wu YB; Ravindran V; Hendriks WH
    Br Poult Sci; 2003 Dec; 44(5):710-8. PubMed ID: 14965091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytate and phytase in fish nutrition.
    Kumar V; Sinha AK; Makkar HP; De Boeck G; Becker K
    J Anim Physiol Anim Nutr (Berl); 2012 Jun; 96(3):335-64. PubMed ID: 21692871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris.
    Promdonkoy P; Tang K; Sornlake W; Harnpicharnchai P; Kobayashi RS; Ruanglek V; Upathanpreecha T; Vesaratchavest M; Eurwilaichitr L; Tanapongpipat S
    FEMS Microbiol Lett; 2009 Jan; 290(1):18-24. PubMed ID: 19025560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of Seven Commercial Phytases in an in Vitro Simulation of Poultry Digestive Tract.
    Menezes-Blackburn D; Gabler S; Greiner R
    J Agric Food Chem; 2015 Jul; 63(27):6142-9. PubMed ID: 26111064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of phytate in the gut of pigs--pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved.
    Schlemmer U; Jany KD; Berk A; Schulz E; Rechkemmer G
    Arch Tierernahr; 2001; 55(4):255-80. PubMed ID: 12357589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention.
    Ravindran V; Cabahug S; Ravindra G; Selle PH; Bryden WL
    Br Poult Sci; 2000 May; 41(2):193-200. PubMed ID: 10890216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.