These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21387846)

  • 1. The effects of particle size, density and shape on margination of nanoparticles in microcirculation.
    Toy R; Hayden E; Shoup C; Baskaran H; Karathanasis E
    Nanotechnology; 2011 Mar; 22(11):115101. PubMed ID: 21387846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Investigation of the Effect of Liposome Surface Charge on Drug Delivery in Microcirculation.
    D'Apolito R; Bochicchio S; Dalmoro A; Barba AA; Guido S; Tomaiuolo G
    Curr Drug Deliv; 2017; 14(2):231-238. PubMed ID: 27527074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale.
    Cooley M; Sarode A; Hoore M; Fedosov DA; Mitragotri S; Sen Gupta A
    Nanoscale; 2018 Aug; 10(32):15350-15364. PubMed ID: 30080212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Margination of Fluorescent Polylactic Acid-Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure.
    Craparo EF; D'Apolito R; Giammona G; Cavallaro G; Tomaiuolo G
    Molecules; 2017 Oct; 22(11):. PubMed ID: 29143777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels.
    Namdee K; Thompson AJ; Charoenphol P; Eniola-Adefeso O
    Langmuir; 2013 Feb; 29(8):2530-5. PubMed ID: 23363293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape.
    D'Apolito R; Tomaiuolo G; Taraballi F; Minardi S; Kirui D; Liu X; Cevenini A; Palomba R; Ferrari M; Salvatore F; Tasciotti E; Guido S
    J Control Release; 2015 Nov; 217():263-72. PubMed ID: 26381900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Margination of micro- and nano-particles in blood flow and its effect on drug delivery.
    Müller K; Fedosov DA; Gompper G
    Sci Rep; 2014 May; 4():4871. PubMed ID: 24786000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow.
    Thompson AJ; Mastria EM; Eniola-Adefeso O
    Biomaterials; 2013 Jul; 34(23):5863-71. PubMed ID: 23642534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Tracking of Particles and Quantification of Margination in Blood Flow.
    Carboni EJ; Bognet BH; Bouchillon GM; Kadilak AL; Shor LM; Ward MD; Ma AWK
    Biophys J; 2016 Oct; 111(7):1487-1495. PubMed ID: 27705771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows.
    Gentile F; Chiappini C; Fine D; Bhavane RC; Peluccio MS; Cheng MM; Liu X; Ferrari M; Decuzzi P
    J Biomech; 2008 Jul; 41(10):2312-8. PubMed ID: 18571181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
    Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y
    Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle margination and its implications on intravenous anticancer drug delivery.
    Carboni E; Tschudi K; Nam J; Lu X; Ma AW
    AAPS PharmSciTech; 2014 Jun; 15(3):762-71. PubMed ID: 24687242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows.
    Lee SY; Ferrari M; Decuzzi P
    Nanotechnology; 2009 Dec; 20(49):495101. PubMed ID: 19904027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases.
    Ta HT; Truong NP; Whittaker AK; Davis TP; Peter K
    Expert Opin Drug Deliv; 2018 Jan; 15(1):33-45. PubMed ID: 28388248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The margination propensity of spherical particles for vascular targeting in the microcirculation.
    Gentile F; Curcio A; Indolfi C; Ferrari M; Decuzzi P
    J Nanobiotechnology; 2008 Aug; 6():9. PubMed ID: 18702833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation.
    Hou HW; Bhagat AA; Chong AG; Mao P; Tan KS; Han J; Lim CT
    Lab Chip; 2010 Oct; 10(19):2605-13. PubMed ID: 20689864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecular-motor-based autonomous delivery of lipid vesicles as nano- or microscale reactors on a chip.
    Hiyama S; Moritani Y; Gojo R; Takeuchi S; Sutoh K
    Lab Chip; 2010 Oct; 10(20):2741-8. PubMed ID: 20714497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow.
    Ye H; Shen Z; Li Y
    Soft Matter; 2018 Sep; 14(36):7401-7419. PubMed ID: 30187053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.