BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21387927)

  • 1. Impact of rhizobacteria on growth and chromium accumulation in Scirpus lacustris L. grown under chromium supplementation.
    Singh NK; Rai UN; Singh M; Tripathi RD
    J Environ Biol; 2010 Sep; 31(5):709-14. PubMed ID: 21387927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kocuria flava induced growth and chromium accumulation in Cicer arietinum L.
    Singh NK; Rai UN; Verma DK; Rathore G
    Int J Phytoremediation; 2014; 16(1):14-28. PubMed ID: 24912212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal accumulation and growth response in Vigna radiata L. inoculated with chromate tolerant rhizobacteria and grown on tannery sludge amended soil.
    Singh NK; Rai UN; Tewari A; Singh M
    Bull Environ Contam Toxicol; 2010 Jan; 84(1):118-24. PubMed ID: 19784534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.).
    Bahadur A; Ahmad R; Afzal A; Feng H; Suthar V; Batool A; Khan A; Mahmood-Ul-Hassan M
    Chemosphere; 2017 Jul; 179():112-119. PubMed ID: 28364646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress.
    Shreya D; Jinal HN; Kartik VP; Amaresan N
    Arch Microbiol; 2020 May; 202(4):887-894. PubMed ID: 31893290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus Annuus L.) growth.
    Faisal M; Hasnain S
    Biotechnol Lett; 2005 Jul; 27(13):943-7. PubMed ID: 16091890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland.
    Mauricio Gutiérrez A; Peña Cabriales JJ; Maldonado Vega M
    Int J Phytoremediation; 2010; 12(4):317-34. PubMed ID: 20734910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead, chromium and manganese removal by in vitro root cultures of two aquatic macrophytes species: Typha latifolia L. and Scirpus americanus pers.
    Santos-Díaz Mdel S; Barrón-Cruz Mdel C
    Int J Phytoremediation; 2011 Jul; 13(6):538-51. PubMed ID: 21972501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between chromium and sulfur metabolism in Brassica juncea.
    Schiavon M; Pilon-Smits EA; Wirtz M; Hell R; Malagoli M
    J Environ Qual; 2008; 37(4):1536-45. PubMed ID: 18574186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.).
    Abou-Shanab RA; Angle JS; van Berkum P
    Int J Phytoremediation; 2007; 9(2):91-105. PubMed ID: 18246718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of chickpea plants and Mesorhizobium as a natural system for chromium phytoremediation.
    Velez PA; Talano MA; Paisio CE; Agostini E; González PS
    Environ Technol; 2017 Sep; 38(17):2164-2172. PubMed ID: 27788623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhizosphere effect of Scirpus triqueter on soil microbial structure during phytoremediation of diesel-contaminated wetland.
    Wei J; Liu X; Zhang X; Chen X; Liu S; Chen L
    Environ Technol; 2014; 35(1-4):514-20. PubMed ID: 24600892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium accumulation potential of Zea mays grown under four different fertilizers.
    Dheeba B; Sampathkumar P; Kannan K
    Indian J Exp Biol; 2014 Dec; 52(12):1206-10. PubMed ID: 25651615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes).
    Mishra VK; Tripathi BD
    J Hazard Mater; 2009 May; 164(2-3):1059-63. PubMed ID: 18938031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of caffeine in mesocosms wetland planted with Scirpus validus.
    Zhang DQ; Hua T; Gersberg RM; Zhu J; Ng WJ; Tan SK
    Chemosphere; 2013 Jan; 90(4):1568-72. PubMed ID: 23079164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
    Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ
    Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconcentration and phytotoxicity of chromium in Eichhornia crassipes.
    Mishra K; Gupta K; Rai UN
    J Environ Biol; 2009 Jul; 30(4):521-6. PubMed ID: 20120490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil.
    Liu J; Duan C; Zhang X; Zhu Y; Lu X
    J Hazard Mater; 2011 Apr; 188(1-3):85-91. PubMed ID: 21320751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes.
    Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF
    Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.