These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299 [TBL] [Abstract][Full Text] [Related]
6. A green approach to the synthesis of graphene nanosheets. Guo HL; Wang XF; Qian QY; Wang FB; Xia XH ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285 [TBL] [Abstract][Full Text] [Related]
7. Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets. Wong CH; Pumera M Phys Chem Chem Phys; 2013 May; 15(20):7755-9. PubMed ID: 23598744 [TBL] [Abstract][Full Text] [Related]
8. Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons. Hirsch A Angew Chem Int Ed Engl; 2009; 48(36):6594-6. PubMed ID: 19582752 [No Abstract] [Full Text] [Related]
9. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure. Zhu G; Yi Y; Han Z; Wang K; Wu X Anal Chim Acta; 2014 Oct; 845():30-7. PubMed ID: 25201269 [TBL] [Abstract][Full Text] [Related]
11. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Chen S; Chen P; Wang Y Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120 [TBL] [Abstract][Full Text] [Related]
12. Graphene edges: a review of their fabrication and characterization. Jia X; Campos-Delgado J; Terrones M; Meunier V; Dresselhaus MS Nanoscale; 2011 Jan; 3(1):86-95. PubMed ID: 21103548 [TBL] [Abstract][Full Text] [Related]
13. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. Wang Z; Li H; Liu Z; Shi Z; Lu J; Suenaga K; Joung SK; Okazaki T; Gu Z; Zhou J; Gao Z; Li G; Sanvito S; Wang E; Iijima S J Am Chem Soc; 2010 Oct; 132(39):13840-7. PubMed ID: 20828123 [TBL] [Abstract][Full Text] [Related]
14. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties. Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963 [TBL] [Abstract][Full Text] [Related]
15. Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Ambrosi A; Pumera M Phys Chem Chem Phys; 2010 Aug; 12(31):8943-7. PubMed ID: 20532301 [TBL] [Abstract][Full Text] [Related]
16. Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes. Taurino I; Magrez A; Matteini F; Forró L; De Micheli G; Carrara S Nanoscale; 2013 Dec; 5(24):12448-55. PubMed ID: 24166278 [TBL] [Abstract][Full Text] [Related]
17. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. Sun CL; Chang CT; Lee HH; Zhou J; Wang J; Sham TK; Pong WF ACS Nano; 2011 Oct; 5(10):7788-95. PubMed ID: 21910421 [TBL] [Abstract][Full Text] [Related]
18. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties. Liu XW; Yao ZJ; Wang YF; Wei XW Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478 [TBL] [Abstract][Full Text] [Related]