BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

606 related articles for article (PubMed ID: 21388198)

  • 1. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons.
    Kumar P; Panchakarla LS; Rao CN
    Nanoscale; 2011 May; 3(5):2127-9. PubMed ID: 21445381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced electrochemical lithium storage by graphene nanoribbons.
    Bhardwaj T; Antic A; Pavan B; Barone V; Fahlman BD
    J Am Chem Soc; 2010 Sep; 132(36):12556-8. PubMed ID: 20731378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets.
    Wong CH; Pumera M
    Phys Chem Chem Phys; 2013 May; 15(20):7755-9. PubMed ID: 23598744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons.
    Hirsch A
    Angew Chem Int Ed Engl; 2009; 48(36):6594-6. PubMed ID: 19582752
    [No Abstract]   [Full Text] [Related]  

  • 9. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure.
    Zhu G; Yi Y; Han Z; Wang K; Wu X
    Anal Chim Acta; 2014 Oct; 845():30-7. PubMed ID: 25201269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemistry of folded graphene edges.
    Ambrosi A; Bonanni A; Pumera M
    Nanoscale; 2011 May; 3(5):2256-60. PubMed ID: 21483940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene edges: a review of their fabrication and characterization.
    Jia X; Campos-Delgado J; Terrones M; Meunier V; Dresselhaus MS
    Nanoscale; 2011 Jan; 3(1):86-95. PubMed ID: 21103548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.
    Wang Z; Li H; Liu Z; Shi Z; Lu J; Suenaga K; Joung SK; Okazaki T; Gu Z; Zhou J; Gao Z; Li G; Sanvito S; Wang E; Iijima S
    J Am Chem Soc; 2010 Oct; 132(39):13840-7. PubMed ID: 20828123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stacked graphene nanofibers for electrochemical oxidation of DNA bases.
    Ambrosi A; Pumera M
    Phys Chem Chem Phys; 2010 Aug; 12(31):8943-7. PubMed ID: 20532301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes.
    Taurino I; Magrez A; Matteini F; Forró L; De Micheli G; Carrara S
    Nanoscale; 2013 Dec; 5(24):12448-55. PubMed ID: 24166278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid.
    Sun CL; Chang CT; Lee HH; Zhou J; Wang J; Sham TK; Pong WF
    ACS Nano; 2011 Oct; 5(10):7788-95. PubMed ID: 21910421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical behavior of caffeic acid at single-walled carbon nanotube:graphite-based electrode.
    Moghaddam AB; Ganjali MR; Dinarvand R; Norouzi P; Saboury AA; Moosavi-Movahedi AA
    Biophys Chem; 2007 Jun; 128(1):30-7. PubMed ID: 17389147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming graphene nanoribbons into nanotubes by use of point defects.
    Sgouros A; Sigalas MM; Papagelis K; Kalosakas G
    J Phys Condens Matter; 2014 Mar; 26(12):125301. PubMed ID: 24594675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.