BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21388198)

  • 1. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Clickable" graphene nanoribbons for biosensor interfaces.
    Hasler R; Fenoy GE; Götz A; Montes-García V; Valentini C; Qiu Z; Kleber C; Samorì P; Müllen K; Knoll W
    Nanoscale Horiz; 2024 Mar; 9(4):598-608. PubMed ID: 38385442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical assessment of the interaction of microbial living cells and carbon nanomaterials.
    Plekhanova Y; Tarasov S; Bykov A; Reshetilov A
    IET Nanobiotechnol; 2019 May; 13(3):332-338. PubMed ID: 31053698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes.
    Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science.
    Gu Y; Qiu Z; Müllen K
    J Am Chem Soc; 2022 Jul; 144(26):11499-11524. PubMed ID: 35671225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing Ribbon-to-Ribbon Heterogeneity of Chemically Unzipped Wide Graphene Nanoribbons by Silver Nanowire-Based Tip-Enhanced Raman Scattering Microscopy.
    Inose T; Toyouchi S; Hara S; Sugioka S; Walke P; Oyabu R; Fortuni B; Peeters W; Usami Y; Hirai K; De Feyter S; Uji-I H; Fujita Y; Tanaka H
    Small; 2024 Jan; 20(3):e2301841. PubMed ID: 37649218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unzipping Carbon Nanotubes to Sub-5-nm Graphene Nanoribbons on Cu(111) by Surface Catalysis.
    Dong W; Li X; Lu S; Li J; Wang Y; Zhong M; Dong X; Xu Z; Shen Q; Gao S; Wu K; Peng LM; Hou S; Zhang Z; Zhang Y; Wang Y
    Small; 2024 May; 20(21):e2308430. PubMed ID: 38126626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Preparation of Internally Self-assembled Lipid Particles Stabilized by Carbon Nanotubes.
    Patil-Sen Y; Sadeghpour A; Rappolt M; Kulkarni CV
    J Vis Exp; 2016 Feb; (108):53489. PubMed ID: 26967650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Sensitive Weaving Sensor of Hybrid Graphene Nanoribbons and Carbon Nanotubes for Enhanced Pressure Sensing Function.
    Li Z; Li ZH; Zhang Y; Xu X; Cheng Y; Zhang Y; Zhao J; Wei N
    ACS Sens; 2024 May; 9(5):2499-2508. PubMed ID: 38683974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant deactivation on graphenic nanocarbon surfaces.
    Liu X; Sen S; Liu J; Kulaots I; Geohegan D; Kane A; Puretzky AA; Rouleau CM; More KL; Palmore GT; Hurt RH
    Small; 2011 Oct; 7(19):2775-85. PubMed ID: 21818846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion of pristine single-walled carbon nanotubes in water by a thiolated organosilane: application in supramolecular nanoassemblies.
    Bottini M; Magrini A; Rosato N; Bergamaschi A; Mustelin T
    J Phys Chem B; 2006 Jul; 110(28):13685-8. PubMed ID: 16836310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contacting individual graphene nanoribbons using carbon nanotube electrodes.
    Zhang J; Qian L; Barin GB; Daaoub AHS; Chen P; Müllen K; Sangtarash S; Ruffieux P; Fasel R; Sadeghi H; Zhang J; Calame M; Perrin ML
    Nat Electron; 2023; 6(8):572-581. PubMed ID: 37636241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Photoluminescence of Unzipped Multi-Walled Carbon Nanotubes.
    Chen M; Qi X; Zhang W; Yang N; Yang D; Wang Y; Zhang L; Yang W; Huang L; Zhang M; Wang S; Strizhak P; Tang J
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34206221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed Assembly of Multi-Walled Nanotubes and Nanoribbons of Amino Acid Amphiphiles Using a Layer-by-Layer Approach.
    Siegl K; Kolik-Shmuel L; Zhang M; Prévost S; Vishnia K; Mor A; Appavou MS; Jafta CJ; Danino D; Gradzielski M
    Chemistry; 2021 Apr; 27(23):6904-6910. PubMed ID: 33560564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bondonic effects in group-IV honeycomb nanoribbons with Stone-Wales topological defects.
    Putz MV; Ori O
    Molecules; 2014 Apr; 19(4):4157-88. PubMed ID: 24705562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous growth of three-dimensional carbon nanotubes and ultrathin graphite networks on copper.
    Jang LW; Shim J; Son DI; Cho H; Zhang L; Zhang J; Menghini M; Locquet JP; Seo JW
    Sci Rep; 2019 Aug; 9(1):12344. PubMed ID: 31462677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of graphene nanoribbons with components of the blood vascular system.
    Chowdhury SM; Fang J; Sitharaman B
    Future Sci OA; 2015; 1(3):. PubMed ID: 26925250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying and manipulating single atoms with scanning transmission electron microscopy.
    Susi T
    Chem Commun (Camb); 2022 Nov; 58(88):12274-12285. PubMed ID: 36260089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductively PEGylated carbon nanomaterials and their use to nucleate 3D protein crystals: a comparison of dimensionality.
    Leese HS; Govada L; Saridakis E; Khurshid S; Menzel R; Morishita T; Clancy AJ; White ER; Chayen NE; Shaffer MSP
    Chem Sci; 2016 Apr; 7(4):2916-2923. PubMed ID: 30090285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based contrast agents for photoacoustic and thermoacoustic tomography.
    Lalwani G; Cai X; Nie L; Wang LV; Sitharaman B
    Photoacoustics; 2013 Dec; 1(3-4):62-67. PubMed ID: 24490141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.