These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 21388614)

  • 1. Potential of mean force for separation of the repeating units in cellulose and hemicellulose.
    Peri S; Karim MN; Khare R
    Carbohydr Res; 2011 May; 346(6):867-71. PubMed ID: 21388614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation studies of the insolubility of cellulose.
    Bergenstråhle M; Wohlert J; Himmel ME; Brady JW
    Carbohydr Res; 2010 Sep; 345(14):2060-6. PubMed ID: 20705283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of methylation on the stability and solvation free energy of amylose and cellulose fragments: a molecular dynamics study.
    Yu H; Amann M; Hansson T; Köhler J; Wich G; van Gunsteren WF
    Carbohydr Res; 2004 Jul; 339(10):1697-709. PubMed ID: 15220079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force pulling of single cellulose chains at the crystalline cellulose-liquid interface: a molecular dynamics study.
    Bergenstråhle M; Thormann E; Nordgren N; Berglund LA
    Langmuir; 2009 Apr; 25(8):4635-42. PubMed ID: 19231815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study.
    Liu H; Sale KL; Holmes BM; Simmons BA; Singh S
    J Phys Chem B; 2010 Apr; 114(12):4293-301. PubMed ID: 20218725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined nuclear magnetic resonance and molecular dynamics study of the two structural motifs for mixed-linkage beta-glucans: methyl beta-cellobioside and methyl beta-laminarabioside.
    Christensen NJ; Hansen PI; Larsen FH; Folkerman T; Motawia MS; Engelsen SB
    Carbohydr Res; 2010 Feb; 345(4):474-86. PubMed ID: 20079487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The soft-confined method for creating molecular models of amorphous polymer surfaces.
    Liu H; Li Y; Krause WE; Rojas OJ; Pasquinelli MA
    J Phys Chem B; 2012 Feb; 116(5):1570-8. PubMed ID: 22292494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic docking study of the carbohydrate binding module protein of Cel7A with the cellulose Ialpha crystal model.
    Yui T; Shiiba H; Tsutsumi Y; Hayashi S; Miyata T; Hirata F
    J Phys Chem B; 2010 Jan; 114(1):49-58. PubMed ID: 19928978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding.
    Levy S; York WS; Stuike-Prill R; Meyer B; Staehelin LA
    Plant J; 1991 Sep; 1(2):195-215. PubMed ID: 1844884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp.
    Wan J; Wang Y; Xiao Q
    Bioresour Technol; 2010 Jun; 101(12):4577-83. PubMed ID: 20181478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A priori crystal structure prediction of native celluloses.
    Viëtor RJ; Mazeau K; Lakin M; Pérez S
    Biopolymers; 2000 Oct; 54(5):342-54. PubMed ID: 10935974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose-hemicellulose interactions - A nanoscale view.
    Khodayari A; Thielemans W; Hirn U; Van Vuure AW; Seveno D
    Carbohydr Polym; 2021 Oct; 270():118364. PubMed ID: 34364609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors.
    Cagnon B; Py X; Guillot A; Stoeckli F; Chambat G
    Bioresour Technol; 2009 Jan; 100(1):292-8. PubMed ID: 18650083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct visualization of straw cell walls by AFM.
    Yan L; Li W; Yang J; Zhu Q
    Macromol Biosci; 2004 Feb; 4(2):112-8. PubMed ID: 15468201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The unique binding mode of cellulosomal CBM4 from Clostridium thermocellum cellobiohydrolase A.
    Alahuhta M; Xu Q; Bomble YJ; Brunecky R; Adney WS; Ding SY; Himmel ME; Lunin VV
    J Mol Biol; 2010 Sep; 402(2):374-87. PubMed ID: 20654622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis.
    Thomsen MH; Thygesen A; Thomsen AB
    Bioresour Technol; 2008 Jul; 99(10):4221-8. PubMed ID: 17936621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy profiles of amino acid side chain analogs near water-vapor interface obtained via MD simulations.
    Shaytan AK; Ivanov VA; Shaitan KV; Khokhlov AR
    J Comput Chem; 2010 Jan; 31(1):204-16. PubMed ID: 19421988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of computer modeling of cellulose.
    Bergenstråhle-Wohlert M; Brady JW
    Methods Mol Biol; 2012; 908():11-22. PubMed ID: 22843385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.