These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21388784)

  • 1. Learning parametric dynamic movement primitives from multiple demonstrations.
    Matsubara T; Hyon SH; Morimoto J
    Neural Netw; 2011 Jun; 24(5):493-500. PubMed ID: 21388784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical movement primitives: learning attractor models for motor behaviors.
    Ijspeert AJ; Nakanishi J; Hoffmann H; Pastor P; Schaal S
    Neural Comput; 2013 Feb; 25(2):328-73. PubMed ID: 23148415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a multiple kernel learning algorithm for LS-SVM by convex programming.
    Jian L; Xia Z; Liang X; Gao C
    Neural Netw; 2011 Jun; 24(5):476-83. PubMed ID: 21441012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB.
    Tani J; Ito M; Sugita Y
    Neural Netw; 2004; 17(8-9):1273-89. PubMed ID: 15555866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general internal model approach for motion learning.
    Xu JX; Wang W
    IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):477-87. PubMed ID: 18348929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of primitive representation from captured human movements and measured ground reaction force to generate physically consistent imitated behaviors.
    Ariki Y; Hyon SH; Morimoto J
    Neural Netw; 2013 Apr; 40():32-43. PubMed ID: 23380596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Teleoperation for a ball-catching task with significant dynamics.
    Smith C; Bratt M; Christensen HI
    Neural Netw; 2008 May; 21(4):604-20. PubMed ID: 18490137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous learning in humanoid robotics through mental imagery.
    Di Nuovo AG; Marocco D; Di Nuovo S; Cangelosi A
    Neural Netw; 2013 May; 41():147-55. PubMed ID: 23122490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.
    Chang PH; Kang SH
    J Neurosci Methods; 2010 May; 189(1):97-112. PubMed ID: 20298718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental Approach for Behavior Learning Using Primitive Motion Skills.
    Dawood F; Loo CK
    Int J Neural Syst; 2018 May; 28(4):1750038. PubMed ID: 29022403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning to recognize objects on the fly: a neurally based dynamic field approach.
    Faubel C; Schöner G
    Neural Netw; 2008 May; 21(4):562-76. PubMed ID: 18501555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification.
    Emken JL; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):33-9. PubMed ID: 15813404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor control in a meta-network with attractor dynamics.
    Krouchev NI; Kalaska JF
    Prog Brain Res; 2007; 165():395-410. PubMed ID: 17925260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.