These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21388806)

  • 41. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste.
    Atar N; Olgun A
    J Hazard Mater; 2007 Jul; 146(1-2):171-9. PubMed ID: 17197077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent--silkworm pupa.
    Noroozi B; Sorial GA; Bahrami H; Arami M
    J Hazard Mater; 2007 Jan; 139(1):167-74. PubMed ID: 16859827
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions.
    Renault F; Morin-Crini N; Gimbert F; Badot PM; Crini G
    Bioresour Technol; 2008 Nov; 99(16):7573-86. PubMed ID: 18403200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers.
    Taheri M; Mohebbi A
    J Hazard Mater; 2008 Aug; 157(1):122-9. PubMed ID: 18280647
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of Neutral Red from aqueous solution by adsorption on spent cottonseed hull substrate.
    Zhou Q; Gong W; Xie C; Yang D; Ling X; Yuan X; Chen S; Liu X
    J Hazard Mater; 2011 Jan; 185(1):502-6. PubMed ID: 20933326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum.
    Kumar KV; Porkodi K
    J Hazard Mater; 2007 Jul; 146(1-2):214-26. PubMed ID: 17222969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A natural sorbent, Luffa cylindrica for the removal of a model basic dye.
    Altinişik A; Gür E; Seki Y
    J Hazard Mater; 2010 Jul; 179(1-3):658-64. PubMed ID: 20378245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of basic and reactive dyes using ethylenediamine modified rice hull.
    Ong ST; Lee CK; Zainal Z
    Bioresour Technol; 2007 Nov; 98(15):2792-9. PubMed ID: 17400446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of the apparent rate constants of the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solutions with neural network.
    Oguz E; Tortum A; Keskinler B
    J Hazard Mater; 2008 Sep; 157(2-3):455-63. PubMed ID: 18289778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activated bauxite waste as an adsorbent for removal of Acid Blue 92 from aqueous solutions.
    Norouzi Sh; Badii Kh; Doulati Ardejani F
    Water Sci Technol; 2010; 62(11):2491-500. PubMed ID: 21099034
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: kinetic and equilibrium studies.
    Kadirvelu K; Karthika C; Vennilamani N; Pattabhi S
    Chemosphere; 2005 Aug; 60(8):1009-17. PubMed ID: 15993147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue.
    Nasuha N; Hameed BH; Din AT
    J Hazard Mater; 2010 Mar; 175(1-3):126-32. PubMed ID: 19879046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The use of artificial neural network (ANN) for modeling adsorption of sunset yellow onto neodymium modified ordered mesoporous carbon.
    Ahmad ZU; Yao L; Lian Q; Islam F; Zappi ME; Gang DD
    Chemosphere; 2020 Oct; 256():127081. PubMed ID: 32447112
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions.
    Bhattacharyya KG; Sharma A
    J Environ Manage; 2004 Jul; 71(3):217-29. PubMed ID: 15158285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent.
    Hameed BH
    J Hazard Mater; 2009 Feb; 162(1):344-50. PubMed ID: 18572309
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An attractive agro-industrial by-product in environmental cleanup: dye biosorption potential of untreated olive pomace.
    Akar T; Tosun I; Kaynak Z; Ozkara E; Yeni O; Sahin EN; Akar ST
    J Hazard Mater; 2009 Jul; 166(2-3):1217-25. PubMed ID: 19153007
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorptive removal of an acid dye by lignocellulosic waste biomass activated carbon: equilibrium and kinetic studies.
    Nethaji S; Sivasamy A
    Chemosphere; 2011 Mar; 82(10):1367-72. PubMed ID: 21176940
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of hazardous dye congored from waste material.
    Jain R; Sikarwar S
    J Hazard Mater; 2008 Apr; 152(3):942-8. PubMed ID: 17825987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorption properties of aluminum magnesium mixed hydroxide for the model anionic dye Reactive Brilliant Red K-2BP.
    Li Y; Gao B; Wu T; Wang B; Li X
    J Hazard Mater; 2009 May; 164(2-3):1098-104. PubMed ID: 18930592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull.
    Arami M; Limaee NY; Mahmoodi NM; Tabrizi NS
    J Hazard Mater; 2006 Jul; 135(1-3):171-9. PubMed ID: 16442216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.