BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21388872)

  • 21. Purification and properties of glyoxylate reductase I from baker's yeast.
    Tochikura T; Fukuda H; Moriguchi M
    J Biochem; 1979 Jul; 86(1):105-10. PubMed ID: 383706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atan1p-an extracellular tannase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme.
    Böer E; Bode R; Mock HP; Piontek M; Kunze G
    Yeast; 2009 Jun; 26(6):323-37. PubMed ID: 19387973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and characterization of a novel NADP-dependent branched-chain alcohol dehydrogenase from Saccharomyces cerevisiae.
    van Iersel MF; Eppink MH; van Berkel WJ; Rombouts FM; Abee T
    Appl Environ Microbiol; 1997 Oct; 63(10):4079-82. PubMed ID: 9327572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Saccharomyces cerevisiae engineered to produce D-xylonate.
    Toivari MH; Ruohonen L; Richard P; Penttilä M; Wiebe MG
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):751-60. PubMed ID: 20680264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical characterisation of a NADPH-dependent carbonyl reductase from Neurospora crassa reducing α- and β-keto esters.
    Richter N; Hummel W
    Enzyme Microb Technol; 2011 May; 48(6-7):472-9. PubMed ID: 22113019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and properties of NADP-linked, alcohol dehydrogenase from Entamoeba histolytica.
    Lo HS; Chang CJ
    J Parasitol; 1982 Jun; 68(3):372-7. PubMed ID: 6284905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol.
    Madhavan A; Tamalampudi S; Ushida K; Kanai D; Katahira S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1067-78. PubMed ID: 19050860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis.
    Tchobanov I; Gal L; Guilloux-Benatier M; Remize F; Nardi T; Guzzo J; Serpaggi V; Alexandre H
    FEMS Microbiol Lett; 2008 Jul; 284(2):213-7. PubMed ID: 18576949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The D-galacturonic acid catabolic pathway in Botrytis cinerea.
    Zhang L; Thiewes H; van Kan JA
    Fungal Genet Biol; 2011 Oct; 48(10):990-7. PubMed ID: 21683149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Expression and functions of (S)-carbonyl reductase II in Saccharomyces cerevisiaes spores].
    Liang H; Zhang R; Xu Y; Zhou X; Jiang J; Li Y; Gao X; Hideki N
    Wei Sheng Wu Xue Bao; 2015 Dec; 55(12):1593-9. PubMed ID: 27101702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid.
    Kuivanen J; Mojzita D; Wang Y; Hilditch S; Penttilä M; Richard P; Wiebe MG
    Appl Environ Microbiol; 2012 Dec; 78(24):8676-83. PubMed ID: 23042175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Penicillium camemberti galacturonate reductase: C-1 oxidation/reduction of uronic acids and substrate inhibition mitigation by aldonic acids.
    Wagschal K; Jordan DB; Hart-Cooper WM; Chan VJ
    Int J Biol Macromol; 2020 Jun; 153():1090-1098. PubMed ID: 31756465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for D-galacturonate metabolism.
    Huisjes EH; Luttik MA; Almering MJ; Bisschops MM; Dang DH; Kleerebezem M; Siezen R; van Maris AJ; Pronk JT
    J Biotechnol; 2012 Dec; 162(2-3):303-10. PubMed ID: 23079077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
    Kuivanen J; Penttilä M; Richard P
    Microb Cell Fact; 2015 Jan; 14():2. PubMed ID: 25566698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing fungal production of galactaric acid.
    Barth D; Wiebe MG
    Appl Microbiol Biotechnol; 2017 May; 101(10):4033-4040. PubMed ID: 28191588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel D-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids.
    Fan CW; Xu GC; Ma BD; Bai YP; Zhang J; Xu JH
    J Biotechnol; 2015 Feb; 195():67-71. PubMed ID: 25449542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel 4-methyl-2-oxopentanoate reductase involved in synthesis of the Japanese sake flavor, ethyl leucate.
    Shimizu M; Yamamoto T; Okabe N; Sakai K; Koide E; Miyachi Y; Kurimoto M; Mochizuki M; Yoshino-Yasuda S; Mitsui S; Ito A; Murano H; Takaya N; Kato M
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3137-45. PubMed ID: 26615399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of fungal strains for conversion of D-galacturonate to meso-galactarate.
    Mojzita D; Wiebe M; Hilditch S; Boer H; Penttilä M; Richard P
    Appl Environ Microbiol; 2010 Jan; 76(1):169-75. PubMed ID: 19897761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A highly specific D-hydroxyisovalerate dehydrogenase from the enniatin producer Fusarium sambucinum.
    Lee C; Görisch H; Kleinkauf H; Zocher R
    J Biol Chem; 1992 Jun; 267(17):11741-4. PubMed ID: 1601849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NADP-dependent alcohol dehydrogenases in bacteria and yeast: purification and partial characterization of the enzymes from Acinetobacter calcoaceticus and Saccharomyces cerevisiae.
    Wales MR; Fewson CA
    Microbiology (Reading); 1994 Jan; 140 ( Pt 1)():173-83. PubMed ID: 8162187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.