BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21389103)

  • 41. A comparative analysis of transcription factor binding models learned from PBM, HT-SELEX and ChIP data.
    Orenstein Y; Shamir R
    Nucleic Acids Res; 2014 Apr; 42(8):e63. PubMed ID: 24500199
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Robust Analytical Pipeline for Genome-Wide Identification of the Genes Regulated by a Transcription Factor: Combinatorial Analysis Performed Using gSELEX-Seq and RNA-Seq.
    Kojima T; Kunitake E; Ihara K; Kobayashi T; Nakano H
    PLoS One; 2016; 11(7):e0159011. PubMed ID: 27411092
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SMiLE-seq identifies binding motifs of single and dimeric transcription factors.
    Isakova A; Groux R; Imbeault M; Rainer P; Alpern D; Dainese R; Ambrosini G; Trono D; Bucher P; Deplancke B
    Nat Methods; 2017 Mar; 14(3):316-322. PubMed ID: 28092692
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive investigation of the gene expression system regulated by an Aspergillus oryzae transcription factor XlnR using integrated mining of gSELEX-Seq and microarray data.
    Oka H; Kojima T; Ihara K; Kobayashi T; Nakano H
    BMC Genomics; 2019 Jan; 20(1):16. PubMed ID: 30621576
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-throughput SELEX SAGE method for quantitative modeling of transcription-factor binding sites.
    Roulet E; Busso S; Camargo AA; Simpson AJ; Mermod N; Bucher P
    Nat Biotechnol; 2002 Aug; 20(8):831-5. PubMed ID: 12101405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mapping genome-wide transcription-factor binding sites using DAP-seq.
    Bartlett A; O'Malley RC; Huang SC; Galli M; Nery JR; Gallavotti A; Ecker JR
    Nat Protoc; 2017 Aug; 12(8):1659-1672. PubMed ID: 28726847
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Better estimation of protein-DNA interaction parameters improve prediction of functional sites.
    Nagaraj VH; O'Flanagan RA; Sengupta AM
    BMC Biotechnol; 2008 Dec; 8():94. PubMed ID: 19105805
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors.
    Berger MF; Bulyk ML
    Nat Protoc; 2009; 4(3):393-411. PubMed ID: 19265799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein binding microarrays for the characterization of DNA-protein interactions.
    Bulyk ML
    Adv Biochem Eng Biotechnol; 2007; 104():65-85. PubMed ID: 17290819
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating a linear k-mer model for protein-DNA interactions using high-throughput SELEX data.
    Kähärä J; Lähdesmäki H
    BMC Bioinformatics; 2013; 14 Suppl 10(Suppl 10):S2. PubMed ID: 24267147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A hierarchical coherent-gene-group model for brain development.
    Tsigelny IF; Kouznetsova VL; Baitaluk M; Changeux JP
    Genes Brain Behav; 2013 Mar; 12(2):147-65. PubMed ID: 23173912
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities.
    Berger MF; Philippakis AA; Qureshi AM; He FS; Estep PW; Bulyk ML
    Nat Biotechnol; 2006 Nov; 24(11):1429-35. PubMed ID: 16998473
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes.
    Riley TR; Slattery M; Abe N; Rastogi C; Liu D; Mann RS; Bussemaker HJ
    Methods Mol Biol; 2014; 1196():255-78. PubMed ID: 25151169
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-throughput analysis of protein-DNA binding affinity.
    Franco-Zorrilla JM; Solano R
    Methods Mol Biol; 2014; 1062():697-709. PubMed ID: 24057393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes.
    Pujato M; Kieken F; Skiles AA; Tapinos N; Fiser A
    Nucleic Acids Res; 2014 Dec; 42(22):13500-12. PubMed ID: 25428367
    [TBL] [Abstract][Full Text] [Related]  

  • 57. By the company they keep: interaction networks define the binding ability of transcription factors.
    Cirillo D; Botta-Orfila T; Tartaglia GG
    Nucleic Acids Res; 2015 Oct; 43(19):e125. PubMed ID: 26089389
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methods for Analysis of Transcription Factor DNA-Binding Specificity In Vitro.
    Jolma A; Taipale J
    Subcell Biochem; 2011; 52():155-73. PubMed ID: 21557082
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of cytosine methylation on DNA binding specificities of human transcription factors.
    Yin Y; Morgunova E; Jolma A; Kaasinen E; Sahu B; Khund-Sayeed S; Das PK; Kivioja T; Dave K; Zhong F; Nitta KR; Taipale M; Popov A; Ginno PA; Domcke S; Yan J; Schübeler D; Vinson C; Taipale J
    Science; 2017 May; 356(6337):. PubMed ID: 28473536
    [TBL] [Abstract][Full Text] [Related]  

  • 60. KaScape: a sequencing-based method for global characterization of protein‒DNA binding affinity.
    Chen H; Xu Y; Jin J; Su XD
    Sci Rep; 2023 Oct; 13(1):16595. PubMed ID: 37789131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.