These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21389197)

  • 21. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medial-lateral balance during stance phase of straight and circular walking of human subjects.
    Kiriyama K; Warabi T; Kato M; Yoshida T; Kokayashi N
    Neurosci Lett; 2005 Nov; 388(2):91-5. PubMed ID: 16039048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FEM analysis in excellent cushion characteristic of ostrich (Struthio camelus) toe pads.
    Zhang R; Ling L; Han D; Wang H; Yu G; Jiang L; Li D; Chang Z
    PLoS One; 2019; 14(5):e0216141. PubMed ID: 31116736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The trajectory of the centre of pressure during barefoot running as a potential measure for foot function.
    De Cock A; Vanrenterghem J; Willems T; Witvrouw E; De Clercq D
    Gait Posture; 2008 May; 27(4):669-75. PubMed ID: 17997096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influences of walking speed change on the lumbosacral joint force distribution.
    Cheng CK; Chen HH; Chen CS; Lee SJ
    Biomed Mater Eng; 1998; 8(3-4):155-65. PubMed ID: 10065882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of foot trajectory in walking toddlers: adaptation to load changes.
    Dominici N; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2007 Apr; 97(4):2790-801. PubMed ID: 17251371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological changes in pedal phalanges through ornithopod dinosaur evolution: a biomechanical approach.
    Moreno K; Carrano MT; Snyder R
    J Morphol; 2007 Jan; 268(1):50-63. PubMed ID: 17146773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toe clearance variability during walking in young and elderly men.
    Mills PM; Barrett RS; Morrison S
    Gait Posture; 2008 Jul; 28(1):101-7. PubMed ID: 18093833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative in vivo forefoot kinematics of Homo sapiens and Pan paniscus.
    Griffin NL; D'Août K; Richmond B; Gordon A; Aerts P
    J Hum Evol; 2010 Dec; 59(6):608-19. PubMed ID: 20851457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long distance running increases plantar pressures beneath the metatarsal heads: a barefoot walking investigation of 200 marathon runners.
    Nagel A; Fernholz F; Kibele C; Rosenbaum D
    Gait Posture; 2008 Jan; 27(1):152-5. PubMed ID: 17276688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait mechanics of lemurid primates on terrestrial and arboreal substrates.
    Franz TM; Demes B; Carlson KJ
    J Hum Evol; 2005 Feb; 48(2):199-217. PubMed ID: 15701531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pressure distribution at the stump/socket interface in transtibial amputees during walking on stairs, slope and non-flat road.
    Dou P; Jia X; Suo S; Wang R; Zhang M
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1067-73. PubMed ID: 16919376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM).
    Pataky TC; Caravaggi P; Savage R; Parker D; Goulermas JY; Sellers WI; Crompton RH
    J Biomech; 2008; 41(9):1987-94. PubMed ID: 18501364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in foot-function parameters during the first 5 months after the onset of independent walking: a longitudinal follow-up study.
    Hallemans A; De Clercq D; Van Dongen S; Aerts P
    Gait Posture; 2006 Feb; 23(2):142-8. PubMed ID: 16399509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The start in speed skating: from running to gliding.
    de Koning JJ; Thomas R; Berger M; de Groot G; van Ingen Schenau GJ
    Med Sci Sports Exerc; 1995 Dec; 27(12):1703-8. PubMed ID: 8614329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A kinematic analysis of walking and physical fitness testing in elderly women.
    Kaneko M; Morimoto Y; Kimura M; Fuchimoto K; Fuchimoto T
    Can J Sport Sci; 1991 Sep; 16(3):223-8. PubMed ID: 1655197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Walking performance of vestibular-defective patients before and after unilateral vestibular neurotomy.
    Borel L; Harlay F; Lopez C; Magnan J; Chays A; Lacour M
    Behav Brain Res; 2004 Apr; 150(1-2):191-200. PubMed ID: 15033292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height.
    Daley MA; Usherwood JR; Felix G; Biewener AA
    J Exp Biol; 2006 Jan; 209(Pt 1):171-87. PubMed ID: 16354788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.