These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21389212)

  • 1. Electrical neuroimaging of voluntary audiospatial attention: evidence for a supramodal attention control network.
    Green JJ; Doesburg SM; Ward LM; McDonald JJ
    J Neurosci; 2011 Mar; 31(10):3560-4. PubMed ID: 21389212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neural circuitry underlying the executive control of auditory spatial attention.
    Wu CT; Weissman DH; Roberts KC; Woldorff MG
    Brain Res; 2007 Feb; 1134(1):187-98. PubMed ID: 17204249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms?
    Banerjee S; Snyder AC; Molholm S; Foxe JJ
    J Neurosci; 2011 Jul; 31(27):9923-32. PubMed ID: 21734284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control mechanisms mediating shifts of attention in auditory and visual space: a spatio-temporal ERP analysis.
    Green JJ; Teder-Sälejärvi WA; McDonald JJ
    Exp Brain Res; 2005 Oct; 166(3-4):358-69. PubMed ID: 16075294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Executive control of spatial attention shifts in the auditory compared to the visual modality.
    Krumbholz K; Nobis EA; Weatheritt RJ; Fink GR
    Hum Brain Mapp; 2009 May; 30(5):1457-69. PubMed ID: 18649349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biases of spatial attention in vision and audition.
    Sosa Y; Teder-Sälejärvi WA; McCourt ME
    Brain Cogn; 2010 Aug; 73(3):229-35. PubMed ID: 20566234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain networks of novelty-driven involuntary and cued voluntary auditory attention shifting.
    Huang S; Belliveau JW; Tengshe C; Ahveninen J
    PLoS One; 2012; 7(8):e44062. PubMed ID: 22937153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory Target Detection at Local and Global Timescales Reveals a Hierarchy of Supramodal Dynamics in the Human Cortex.
    Niedernhuber M; Raimondo F; Sitt JD; Bekinschtein TA
    J Neurosci; 2022 Nov; 42(46):8729-8741. PubMed ID: 36223999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory spatial attention representations in the human cerebral cortex.
    Kong L; Michalka SW; Rosen ML; Sheremata SL; Swisher JD; Shinn-Cunningham BG; Somers DC
    Cereb Cortex; 2014 Mar; 24(3):773-84. PubMed ID: 23180753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a temporo-fronto-parietal network during sustained spatial or spectral auditory processing.
    Bidet-Caulet A; Bertrand O
    J Cogn Neurosci; 2005 Nov; 17(11):1691-703. PubMed ID: 16269106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain networks underlying mental imagery of auditory and visual information.
    Zvyagintsev M; Clemens B; Chechko N; Mathiak KA; Sack AT; Mathiak K
    Eur J Neurosci; 2013 May; 37(9):1421-34. PubMed ID: 23383863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking the voluntary control of auditory spatial attention with event-related brain potentials.
    Störmer VS; Green JJ; McDonald JJ
    Psychophysiology; 2009 Mar; 46(2):357-66. PubMed ID: 19170950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective connectivity reveals right-hemisphere dominance in audiospatial perception: implications for models of spatial neglect.
    Dietz MJ; Friston KJ; Mattingley JB; Roepstorff A; Garrido MI
    J Neurosci; 2014 Apr; 34(14):5003-11. PubMed ID: 24695717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.
    Wang W; Viswanathan S; Lee T; Grafton ST
    PLoS One; 2016; 11(7):e0158465. PubMed ID: 27391013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separable networks for top-down attention to auditory non-spatial and visuospatial modalities.
    Braga RM; Wilson LR; Sharp DJ; Wise RJ; Leech R
    Neuroimage; 2013 Jul; 74():77-86. PubMed ID: 23435206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional control: temporal relationships within the fronto-parietal network.
    Shomstein S; Kravitz DJ; Behrmann M
    Neuropsychologia; 2012 May; 50(6):1202-10. PubMed ID: 22386880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An event-related FMRI study of exogenous orienting across vision and audition.
    Yang Z; Mayer AR
    Hum Brain Mapp; 2014 Mar; 35(3):964-74. PubMed ID: 23288620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parietal cortex mediates voluntary control of spatial and nonspatial auditory attention.
    Shomstein S; Yantis S
    J Neurosci; 2006 Jan; 26(2):435-9. PubMed ID: 16407540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillatory alpha modulations in right auditory regions reflect the validity of acoustic cues in an auditory spatial attention task.
    Weisz N; Müller N; Jatzev S; Bertrand O
    Cereb Cortex; 2014 Oct; 24(10):2579-90. PubMed ID: 23645711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.