BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 21389223)

  • 41. Radial glia give rise to adult neural stem cells in the subventricular zone.
    Merkle FT; Tramontin AD; García-Verdugo JM; Alvarez-Buylla A
    Proc Natl Acad Sci U S A; 2004 Dec; 101(50):17528-32. PubMed ID: 15574494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels.
    Martínez-Martínez MÁ; De Juan Romero C; Fernández V; Cárdenas A; Götz M; Borrell V
    Nat Commun; 2016 Jun; 7():11812. PubMed ID: 27264089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The evolution of basal progenitors in the developing non-mammalian brain.
    Nomura T; Ohtaka-Maruyama C; Yamashita W; Wakamatsu Y; Murakami Y; Calegari F; Suzuki K; Gotoh H; Ono K
    Development; 2016 Jan; 143(1):66-74. PubMed ID: 26732839
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex.
    Tamamaki N; Nakamura K; Okamoto K; Kaneko T
    Neurosci Res; 2001 Sep; 41(1):51-60. PubMed ID: 11535293
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temporal plasticity of apical progenitors in the developing mouse neocortex.
    Oberst P; Fièvre S; Baumann N; Concetti C; Bartolini G; Jabaudon D
    Nature; 2019 Sep; 573(7774):370-374. PubMed ID: 31462778
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Radial 'glial' progenitors: neurogenesis and signaling.
    Ever L; Gaiano N
    Curr Opin Neurobiol; 2005 Feb; 15(1):29-33. PubMed ID: 15721741
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex.
    Tabata H; Kanatani S; Nakajima K
    Cereb Cortex; 2009 Sep; 19(9):2092-105. PubMed ID: 19150920
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development.
    Calegari F; Haubensak W; Haffner C; Huttner WB
    J Neurosci; 2005 Jul; 25(28):6533-8. PubMed ID: 16014714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diverse behaviors of outer radial glia in developing ferret and human cortex.
    Gertz CC; Lui JH; LaMonica BE; Wang X; Kriegstein AR
    J Neurosci; 2014 Feb; 34(7):2559-70. PubMed ID: 24523546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-Notch signaling.
    Nelson BR; Hodge RD; Bedogni F; Hevner RF
    J Neurosci; 2013 May; 33(21):9122-39. PubMed ID: 23699523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differentiation of radial glia-like cells from embryonic stem cells.
    Liour SS; Yu RK
    Glia; 2003 Apr; 42(2):109-17. PubMed ID: 12655595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular identity of human outer radial glia during cortical development.
    Pollen AA; Nowakowski TJ; Chen J; Retallack H; Sandoval-Espinosa C; Nicholas CR; Shuga J; Liu SJ; Oldham MC; Diaz A; Lim DA; Leyrat AA; West JA; Kriegstein AR
    Cell; 2015 Sep; 163(1):55-67. PubMed ID: 26406371
    [TBL] [Abstract][Full Text] [Related]  

  • 53. OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease.
    LaMonica BE; Lui JH; Wang X; Kriegstein AR
    Curr Opin Neurobiol; 2012 Oct; 22(5):747-53. PubMed ID: 22487088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex.
    Vaid S; Camp JG; Hersemann L; Eugster Oegema C; Heninger AK; Winkler S; Brandl H; Sarov M; Treutlein B; Huttner WB; Namba T
    Development; 2018 Oct; 145(20):. PubMed ID: 30266827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
    Leavitt BR; Hernit-Grant CS; Macklis JD
    Exp Neurol; 1999 May; 157(1):43-57. PubMed ID: 10222107
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes.
    Allen DE; Donohue KC; Cadwell CR; Shin D; Keefe MG; Sohal VS; Nowakowski TJ
    Science; 2022 Jun; 376(6600):1441-1446. PubMed ID: 35587512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration.
    Weissman T; Noctor SC; Clinton BK; Honig LS; Kriegstein AR
    Cereb Cortex; 2003 Jun; 13(6):550-9. PubMed ID: 12764028
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engraftment and differentiation of neocortical progenitor cells transplanted to the embryonic brain in utero.
    Carletti B; Grimaldi P; Magrassi L; Rossi F
    J Neurocytol; 2004 May; 33(3):309-19. PubMed ID: 15475686
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The marginal zone/layer I as a novel niche for neurogenesis and gliogenesis in developing cerebral cortex.
    Costa MR; Kessaris N; Richardson WD; Götz M; Hedin-Pereira C
    J Neurosci; 2007 Oct; 27(42):11376-88. PubMed ID: 17942732
    [TBL] [Abstract][Full Text] [Related]  

  • 60. QKI expression is regulated during neuron-glial cell fate decisions.
    Hardy RJ
    J Neurosci Res; 1998 Oct; 54(1):46-57. PubMed ID: 9778149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.