These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 21389239)

  • 21. Activation of the left superior temporal gyrus of musicians by music-derived sounds.
    Matsui T; Tanaka S; Kazai K; Tsuzaki M; Katayose H
    Neuroreport; 2013 Jan; 24(1):41-5. PubMed ID: 23196415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Receptive and expressive language activations for sentences: a PET study.
    Müller RA; Rothermel RD; Behen ME; Muzik O; Mangner TJ; Chugani HT
    Neuroreport; 1997 Dec; 8(17):3767-70. PubMed ID: 9427367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Music and language side by side in the brain: a PET study of the generation of melodies and sentences.
    Brown S; Martinez MJ; Parsons LM
    Eur J Neurosci; 2006 May; 23(10):2791-803. PubMed ID: 16817882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From Vivaldi to Beatles and back: predicting lateralized brain responses to music.
    Alluri V; Toiviainen P; Lund TE; Wallentin M; Vuust P; Nandi AK; Ristaniemi T; Brattico E
    Neuroimage; 2013 Dec; 83():627-36. PubMed ID: 23810975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An fMRI study investigating effects of conceptually related sentences on the perception of degraded speech.
    Guediche S; Reilly M; Santiago C; Laurent P; Blumstein SE
    Cortex; 2016 Jun; 79():57-74. PubMed ID: 27100909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonetic detail and lateralization of reading-related inner speech and of auditory and somatosensory feedback processing during overt reading.
    Kell CA; Darquea M; Behrens M; Cordani L; Keller C; Fuchs S
    Hum Brain Mapp; 2017 Jan; 38(1):493-508. PubMed ID: 27622923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural mechanisms underlying song and speech perception can be differentiated using an illusory percept.
    Hymers M; Prendergast G; Liu C; Schulze A; Young ML; Wastling SJ; Barker GJ; Millman RE
    Neuroimage; 2015 Mar; 108():225-33. PubMed ID: 25512041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Data-driven analysis of functional brain interactions during free listening to music and speech.
    Fang J; Hu X; Han J; Jiang X; Zhu D; Guo L; Liu T
    Brain Imaging Behav; 2015 Jun; 9(2):162-77. PubMed ID: 24526569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's areas.
    Abrams DA; Ryali S; Chen T; Balaban E; Levitin DJ; Menon V
    Cereb Cortex; 2013 Jul; 23(7):1703-14. PubMed ID: 22693339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maladaptive connectivity of Broca's area in schizophrenia during audiovisual speech perception: an fMRI study.
    Szycik GR; Ye Z; Mohammadi B; Dillo W; Te Wildt BT; Samii A; Frieling H; Bleich S; Münte TF
    Neuroscience; 2013 Dec; 253():274-82. PubMed ID: 23994183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relationship between the neural computations for speech and music perception is context-dependent: an activation likelihood estimate study.
    LaCroix AN; Diaz AF; Rogalsky C
    Front Psychol; 2015; 6():1138. PubMed ID: 26321976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Similar cerebral networks in language, music and song perception.
    Schön D; Gordon R; Campagne A; Magne C; Astésano C; Anton JL; Besson M
    Neuroimage; 2010 May; 51(1):450-61. PubMed ID: 20156575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatio-temporal distribution of brain activity associated with audio-visually congruent and incongruent speech and the McGurk Effect.
    Pratt H; Bleich N; Mittelman N
    Brain Behav; 2015 Nov; 5(11):e00407. PubMed ID: 26664791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Categorical speech processing in Broca's area: an fMRI study using multivariate pattern-based analysis.
    Lee YS; Turkeltaub P; Granger R; Raizada RD
    J Neurosci; 2012 Mar; 32(11):3942-8. PubMed ID: 22423114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Neurobiology of Agrammatic Sentence Comprehension: A Lesion Study.
    Rogalsky C; LaCroix AN; Chen KH; Anderson SW; Damasio H; Love T; Hickok G
    J Cogn Neurosci; 2018 Feb; 30(2):234-255. PubMed ID: 29064339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determining hierarchical functional networks from auditory stimuli fMRI.
    Patel RS; Bowman FD; Rilling JK
    Hum Brain Mapp; 2006 May; 27(5):462-70. PubMed ID: 16568419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of brain activity underlying working memory for music in a naturalistic condition.
    Burunat I; Alluri V; Toiviainen P; Numminen J; Brattico E
    Cortex; 2014 Aug; 57():254-69. PubMed ID: 24949579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural systems underlying British Sign Language and audio-visual English processing in native users.
    MacSweeney M; Woll B; Campbell R; McGuire PK; David AS; Williams SC; Suckling J; Calvert GA; Brammer MJ
    Brain; 2002 Jul; 125(Pt 7):1583-93. PubMed ID: 12077007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Singing in the brain: Neural representation of music and voice as revealed by fMRI.
    Whitehead JC; Armony JL
    Hum Brain Mapp; 2018 Dec; 39(12):4913-4924. PubMed ID: 30120854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A parietal-temporal sensory-motor integration area for the human vocal tract: evidence from an fMRI study of skilled musicians.
    Pa J; Hickok G
    Neuropsychologia; 2008 Jan; 46(1):362-8. PubMed ID: 17709121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.