BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

673 related articles for article (PubMed ID: 21389988)

  • 1. Crystal structure of metarhodopsin II.
    Choe HW; Kim YJ; Park JH; Morizumi T; Pai EF; Krauss N; Hofmann KP; Scheerer P; Ernst OP
    Nature; 2011 Mar; 471(7340):651-5. PubMed ID: 21389988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
    Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ
    J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ligand channel through the G protein coupled receptor opsin.
    Hildebrand PW; Scheerer P; Park JH; Choe HW; Piechnick R; Ernst OP; Hofmann KP; Heck M
    PLoS One; 2009; 4(2):e4382. PubMed ID: 19194506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of opsin in its G-protein-interacting conformation.
    Scheerer P; Park JH; Hildebrand PW; Kim YJ; Krauss N; Choe HW; Hofmann KP; Ernst OP
    Nature; 2008 Sep; 455(7212):497-502. PubMed ID: 18818650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural basis of agonist-induced activation in constitutively active rhodopsin.
    Standfuss J; Edwards PC; D'Antona A; Fransen M; Xie G; Oprian DD; Schertler GF
    Nature; 2011 Mar; 471(7340):656-60. PubMed ID: 21389983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explaining the mobility of retinal in activated rhodopsin and opsin.
    Mertz B; Feng J; Corcoran C; Neeley B
    Photochem Photobiol Sci; 2015 Nov; 14(11):1952-64. PubMed ID: 26248892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational selection and equilibrium governs the ability of retinals to bind opsin.
    Schafer CT; Farrens DL
    J Biol Chem; 2015 Feb; 290(7):4304-18. PubMed ID: 25451936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches.
    Meyer CK; Bohme M; Ockenfels A; Gartner W; Hofmann KP; Ernst OP
    J Biol Chem; 2000 Jun; 275(26):19713-8. PubMed ID: 10770924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II.
    Heck M; Schädel SA; Maretzki D; Bartl FJ; Ritter E; Palczewski K; Hofmann KP
    J Biol Chem; 2003 Jan; 278(5):3162-9. PubMed ID: 12427735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin.
    Ahuja S; Eilers M; Hirshfeld A; Yan EC; Ziliox M; Sakmar TP; Sheves M; Smith SO
    J Am Chem Soc; 2009 Oct; 131(42):15160-9. PubMed ID: 19795853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deactivation and proton transfer in light-induced metarhodopsin II/metarhodopsin III conversion: a time-resolved fourier transform infrared spectroscopic study.
    Ritter E; Elgeti M; Hofmann KP; Bartl FJ
    J Biol Chem; 2007 Apr; 282(14):10720-30. PubMed ID: 17287211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of opsin activation.
    Buczyłko J; Saari JC; Crouch RK; Palczewski K
    J Biol Chem; 1996 Aug; 271(34):20621-30. PubMed ID: 8702809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved Tyr223(5.58) plays different roles in the activation and G-protein interaction of rhodopsin.
    Elgeti M; Kazmin R; Heck M; Morizumi T; Ritter E; Scheerer P; Ernst OP; Siebert F; Hofmann KP; Bartl FJ
    J Am Chem Soc; 2011 May; 133(18):7159-65. PubMed ID: 21506561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S; Palczewski K; Hofmann KP
    Biochemistry; 1996 Mar; 35(9):2901-8. PubMed ID: 8608127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in the binding site and hydrolysis of protonated Schiff base.
    Liu J; Liu MY; Nguyen JB; Bhagat A; Mooney V; Yan EC
    J Am Chem Soc; 2009 Jul; 131(25):8750-1. PubMed ID: 19505100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.