BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 21390271)

  • 1. Identifying causal genes and dysregulated pathways in complex diseases.
    Kim YA; Wuchty S; Przytycka TM
    PLoS Comput Biol; 2011 Mar; 7(3):e1001095. PubMed ID: 21390271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide associations of signaling pathways in glioblastoma multiforme.
    Wuchty S; Vazquez A; Bozdag S; Bauer PO
    BMC Med Genomics; 2013 Mar; 6():11. PubMed ID: 23537212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IndividualizedPath: identifying genetic alterations contributing to the dysfunctional pathways in glioblastoma individuals.
    Ping Y; Zhang H; Deng Y; Wang L; Zhao H; Pang L; Fan H; Xu C; Li F; Zhang Y; Gong Y; Xiao Y; Li X
    Mol Biosyst; 2014 Aug; 10(8):2031-42. PubMed ID: 24911613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying core gene modules in glioblastoma based on multilayer factor-mediated dysfunctional regulatory networks through integrating multi-dimensional genomic data.
    Ping Y; Deng Y; Wang L; Zhang H; Zhang Y; Xu C; Zhao H; Fan H; Yu F; Xiao Y; Li X
    Nucleic Acids Res; 2015 Feb; 43(4):1997-2007. PubMed ID: 25653168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma.
    Dong H; Luo L; Hong S; Siu H; Xiao Y; Jin L; Chen R; Xiong M
    BMC Syst Biol; 2010 Nov; 4():163. PubMed ID: 21114830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling.
    Ruano Y; Mollejo M; Ribalta T; Fiaño C; Camacho FI; Gómez E; de Lope AR; Hernández-Moneo JL; Martínez P; Meléndez B
    Mol Cancer; 2006 Sep; 5():39. PubMed ID: 17002787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genes and pathways involved in kidney renal clear cell carcinoma.
    Yang W; Yoshigoe K; Qin X; Liu JS; Yang JY; Niemierko A; Deng Y; Liu Y; Dunker A; Chen Z; Wang L; Xu D; Arabnia HR; Tong W; Yang M
    BMC Bioinformatics; 2014; 15 Suppl 17(Suppl 17):S2. PubMed ID: 25559354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression.
    de Tayrac M; Etcheverry A; Aubry M; Saïkali S; Hamlat A; Quillien V; Le Treut A; Galibert MD; Mosser J
    Genes Chromosomes Cancer; 2009 Jan; 48(1):55-68. PubMed ID: 18828157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined analysis of genome-wide expression and copy number profiles to identify key altered genomic regions in cancer.
    Fontanillo C; Aibar S; Sanchez-Santos JM; De Las Rivas J
    BMC Genomics; 2012; 13 Suppl 5(Suppl 5):S5. PubMed ID: 23095915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.
    Xu T; Le TD; Liu L; Wang R; Sun B; Li J
    PLoS One; 2016; 11(4):e0152792. PubMed ID: 27035433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering gene-environment interactions in glioblastoma through a comprehensive data integration bioinformatics method.
    Kunkle B; Yoo C; Roy D
    Neurotoxicology; 2013 Mar; 35():1-14. PubMed ID: 23261424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of gene expression and methylation to unravel biological networks in glioblastoma patients.
    Gadaleta F; Bessonov K; Van Steen K
    Genet Epidemiol; 2017 Feb; 41(2):136-144. PubMed ID: 28019039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma.
    Park AK; Kim P; Ballester LY; Esquenazi Y; Zhao Z
    Neuro Oncol; 2019 Jan; 21(1):59-70. PubMed ID: 30053126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.
    Kogelman LJ; Zhernakova DV; Westra HJ; Cirera S; Fredholm M; Franke L; Kadarmideen HN
    Genome Med; 2015 Oct; 7():105. PubMed ID: 26482556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of potential crucial genes and molecular mechanisms in glioblastoma multiforme by bioinformatics analysis.
    Chen X; Pan Y; Yan M; Bao G; Sun X
    Mol Med Rep; 2020 Aug; 22(2):859-869. PubMed ID: 32467990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach.
    Zhang D; Chen P; Zheng CH; Xia J
    Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Hub Genes and Key Pathways Associated with Anti-
    Arya KR; Bharath Chand RP; Abhinand CS; Nair AS; Oommen OV; Sudhakaran PR
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33803224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.