These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 21390385)
1. A 4-[(3R,4R)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase for a CG base pair in triplex DNA. Hari Y; Akabane M; Hatanaka Y; Nakahara M; Obika S Chem Commun (Camb); 2011 Apr; 47(15):4424-6. PubMed ID: 21390385 [TBL] [Abstract][Full Text] [Related]
2. [Development of artificial nucleic acid that recognizes a CG base pair in triplex DNA formation]. Hari Y Yakugaku Zasshi; 2013; 133(11):1201-8. PubMed ID: 24189561 [TBL] [Abstract][Full Text] [Related]
3. 2',4'-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in a parallel-motif DNA triplex. Hari Y; Akabane M; Obika S Chem Commun (Camb); 2013 Aug; 49(67):7421-3. PubMed ID: 23856971 [TBL] [Abstract][Full Text] [Related]
4. 2',4'-BNA bearing a 2-pyridine nucleobase for CG base pair recognition in the parallel motif triplex DNA. Hari Y; Matsugu S; Inohara H; Hatanaka Y; Akabane M; Imanishi T; Obika S Org Biomol Chem; 2010 Sep; 8(18):4176-80. PubMed ID: 20648389 [TBL] [Abstract][Full Text] [Related]
5. The stability of triplex DNA is affected by the stability of the underlying duplex. Rusling DA; Rachwal PA; Brown T; Fox KR Biophys Chem; 2009 Dec; 145(2-3):105-10. PubMed ID: 19819611 [TBL] [Abstract][Full Text] [Related]
6. Recognition of CG inversions in DNA triple helices by methylated 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues. Ranasinghe RT; Rusling DA; Powers VE; Fox KR; Brown T Chem Commun (Camb); 2005 May; (20):2555-7. PubMed ID: 15900324 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and evaluation of oligonucleotides incorporating novel artificial nucleobases for the selective formation of non-natural type triplexes. Nakashima S; Matsuura N; Nagatsugi F; Maeda M; Sasaki S Nucleic Acids Symp Ser; 1997; (37):33-4. PubMed ID: 9585985 [TBL] [Abstract][Full Text] [Related]
8. DNA with stable fluorinated dA and dG substitutes: syntheses, base pairing and 19F-NMR spectra of 7-fluoro-7-deaza-2'-deoxyadenosine and 7-fluoro-7-deaza-2'-deoxyguanosine. Seela F; Xu K Org Biomol Chem; 2008 Oct; 6(19):3552-60. PubMed ID: 19082156 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and triplex binding properties of oligonucleotides containing a novel nucleobase. Lecubin F; Devys M; Fourrey JL; Sun JS; Benhida R Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1281-4. PubMed ID: 14565399 [TBL] [Abstract][Full Text] [Related]
10. An isocytidine derivative with a 2-amino-6-methylpyridine unit for selective recognition of the CG interrupting site in an antiparallel triplex DNA. Okamura H; Taniguchi Y; Sasaki S Chembiochem; 2014 Nov; 15(16):2374-8. PubMed ID: 25186222 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and studies of modified oligonucleotides-directed triple helix formation at the purine-pyrimidine interrupted site. Jazouli M; Guianvarc'h D; Bougrin K; Soufiaoui M; Vierling P; Benhida R Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1277-80. PubMed ID: 14565398 [TBL] [Abstract][Full Text] [Related]
12. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
13. Recognition of triplex forming oligodeoxynucleotides incorporating abasic sites by 5-arylcytosine residues in duplex DNAs. Mizuta M; Banba J; Kanamori T; Ohkubo A; Sekine M; Seio K Nucleic Acids Symp Ser (Oxf); 2007; (51):25-6. PubMed ID: 18029568 [TBL] [Abstract][Full Text] [Related]
14. Triplex formation on DNA targets: how to choose the oligonucleotide. Vekhoff P; Ceccaldi A; Polverari D; Pylouster J; Pisano C; Arimondo PB Biochemistry; 2008 Nov; 47(47):12277-89. PubMed ID: 18954091 [TBL] [Abstract][Full Text] [Related]
15. Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex. Ihara T; Ishii T; Araki N; Wilson AW; Jyo A J Am Chem Soc; 2009 Mar; 131(11):3826-7. PubMed ID: 19243184 [TBL] [Abstract][Full Text] [Related]
16. Energetics of strand-displacement reactions in triple helices: a spectroscopic study. Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941 [TBL] [Abstract][Full Text] [Related]
18. 2',4'-BNA derivatives bearing an unnatural nucleobase: synthesis and application to triplex-forming oligonucleotides. Inohara H; Obika S; Imanishi T Nucleic Acids Symp Ser (Oxf); 2004; (48):63-4. PubMed ID: 17150479 [TBL] [Abstract][Full Text] [Related]
19. Triplex formation involving 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) with 2-pyridone base analogue: efficient and selective recognition of C:G interruption. Torigoe H; Hari Y; Obika S; Imanishi T Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1097-9. PubMed ID: 14565353 [TBL] [Abstract][Full Text] [Related]
20. Four base recognition by triplex-forming oligonucleotides at physiological pH. Rusling DA; Powers VE; Ranasinghe RT; Wang Y; Osborne SD; Brown T; Fox KR Nucleic Acids Res; 2005; 33(9):3025-32. PubMed ID: 15911633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]