These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21391031)

  • 1. Comparison of kriging and cokriging for the geostatistical estimation of specific capacity in the Newark Basin (NJ) aquifer system.
    Carter GP; Miskewitz RJ; Isukapalli S; Mun Y; Vyas V; Yoon S; Georgeopoulos P; Uchrin CG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(4):371-7. PubMed ID: 21391031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application and evaluation of kriging and cokriging methods on groundwater depth mapping.
    Ahmadi SH; Sedghamiz A
    Environ Monit Assess; 2008 Mar; 138(1-3):357-68. PubMed ID: 17525831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpolations of groundwater table elevation in dissected uplands.
    Chung JW; Rogers JD
    Ground Water; 2012; 50(4):598-607. PubMed ID: 22107357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of geostatistical techniques and their hybrid in modelling of groundwater quality index in the Marand Plain in Iran.
    Rostami AA; Isazadeh M; Shahabi M; Nozari H
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34993-35009. PubMed ID: 31659709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of geostatistical models to identify spatial distribution of groundwater quality parameters.
    Farzaneh G; Khorasani N; Ghodousi J; Panahi M
    Environ Sci Pollut Res Int; 2022 May; 29(24):36512-36532. PubMed ID: 35064881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging.
    Goovaerts P
    Int J Health Geogr; 2006 Nov; 5():52. PubMed ID: 17137504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal groundwater level variation geostatistical modeling in the city of Konya, Turkey.
    Cay T; Uyan M
    Water Environ Res; 2009 Dec; 81(12):2460-70. PubMed ID: 20099631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive kriging and geostatistical simulation.
    Barca E; Passarella G
    Environ Monit Assess; 2008 Feb; 137(1-3):261-73. PubMed ID: 17564802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas.
    Gong G; Mattevada S; O'Bryant SE
    Environ Res; 2014 Apr; 130():59-69. PubMed ID: 24559533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying specific capacity and salinity variability in Amman Zarqa Basin, Central Jordan, using empirical statistical and geostatistical techniques.
    Shaqour F; Taany R; Rimawi O; Saffarini G
    Environ Monit Assess; 2016 Jan; 188(1):46. PubMed ID: 26687089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The occurrence and dominant controls on arsenic in the Newark and Gettysburg Basins.
    Blake JM; Peters SC
    Sci Total Environ; 2015 Feb; 505():1340-9. PubMed ID: 24565223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of geostatistical kriging algorithms for intertidal surface sediment facies mapping with grain size data.
    Park NW; Jang DH
    ScientificWorldJournal; 2014; 2014():145824. PubMed ID: 24688362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cokriging Transmissivity, Head and Trajectory Data for Transmissivity and Solute Path Estimation.
    Butera I; Soffia C
    Ground Water; 2017 May; 55(3):362-374. PubMed ID: 27861818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of water table interpolation and groundwater storage volume using fuzzy computations.
    Masoumi Z; Rezaei A; Maleki J
    Environ Monit Assess; 2019 May; 191(6):401. PubMed ID: 31134353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping soil gas radon concentration: a comparative study of geostatistical methods.
    Buttafuoco G; Tallarico A; Falcone G
    Environ Monit Assess; 2007 Aug; 131(1-3):135-51. PubMed ID: 17242970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate Poisson cokriging: A geostatistical model for health count data.
    Payares-Garcia D; Osei F; Mateu J; Stein A
    Stat Methods Med Res; 2024 Sep; 33(9):1637-1659. PubMed ID: 39140295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydraulic Tomography: 3D Hydraulic Conductivity, Fracture Network, and Connectivity in Mudstone.
    Tiedeman CR; Barrash W
    Ground Water; 2020 Mar; 58(2):238-257. PubMed ID: 31187873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins.
    Varouchakis EA; Hristopulos DT
    Environ Monit Assess; 2013 Jan; 185(1):1-19. PubMed ID: 22311559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.