BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21391101)

  • 21. Mechanistic insights into the effects of climate change on larval cod.
    Kristiansen T; Stock C; Drinkwater KF; Curchitser EN
    Glob Chang Biol; 2014 May; 20(5):1559-84. PubMed ID: 24343971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chapter 3. Effects of climate change and commercial fishing on Atlantic cod Gadus morhua.
    Mieszkowska N; Genner MJ; Hawkins SJ; Sims DW
    Adv Mar Biol; 2009; 56():213-73. PubMed ID: 19895976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exposure of first-feeding cod larvae to dispersed crude oil results in similar transcriptional and metabolic responses as food deprivation.
    Hansen BH; Lie KK; Størseth TR; Nordtug T; Altin D; Olsvik PA
    J Toxicol Environ Health A; 2016; 79(13-15):558-71. PubMed ID: 27484138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of the cumulative effects of chemical spills using a spatial-temporal dynamics analysis algorithm.
    Dinca-Panaitescu M; Li J; Dinca-Panaitescu S
    J Hazard Mater; 2007 Nov; 149(3):707-19. PubMed ID: 17532117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impacts of a fuel oil spill on seagrass meadows in a subtropical port, Gladstone, Australia--the value of long-term marine habitat monitoring in high risk areas.
    Taylor HA; Rasheed MA
    Mar Pollut Bull; 2011; 63(5-12):431-7. PubMed ID: 21601226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Method for generating parameterized ecotoxicity data of dispersed oil for use in environmental modelling.
    Nordtug T; Olsen AJ; Altin D; Meier S; Overrein I; Hansen BH; Johansen Ø
    Mar Pollut Bull; 2011 Oct; 62(10):2106-13. PubMed ID: 21835420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating the impact of petroleum substances on survival in early life stages of cod (Gadus morhua) using the dynamic energy budget theory.
    Klok C; Nordtug T; Tamis JE
    Mar Environ Res; 2014 Oct; 101():60-68. PubMed ID: 25244299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments.
    Fritt-Rasmussen J; Brandvik PJ
    Mar Pollut Bull; 2011 Aug; 62(8):1780-5. PubMed ID: 21714974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model to predict rate of dissolution of toxic compounds into seawater from an oil spill.
    Riazi MR; Roomi YA
    Int J Toxicol; 2008; 27(5):379-86. PubMed ID: 19037808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forecasting future recruitment success for Atlantic cod in the warming and acidifying Barents Sea.
    Koenigstein S; Dahlke FT; Stiasny MH; Storch D; Clemmesen C; Pörtner HO
    Glob Chang Biol; 2018 Jan; 24(1):526-535. PubMed ID: 28755499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A manipulative field experiment to evaluate an integrative methodology for assessing sediment pollution in estuarine ecosystems.
    Sanz-Lázaro C; Marín A
    Sci Total Environ; 2009 May; 407(11):3510-7. PubMed ID: 19272633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors contributing to inter- and intra-annual variation in condition of cod Gadus morhua in the Barents Sea.
    Sandeman LR; Yaragina NA; Marshall CT
    J Anim Ecol; 2008 Jul; 77(4):725-34. PubMed ID: 18384351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recruitment and survival of immature seabirds in relation to oil spills and climate variability.
    Votier SC; Birkhead TR; Oro D; Trinder M; Grantham MJ; Clark JA; McCleery RH; Hatchwell BJ
    J Anim Ecol; 2008 Sep; 77(5):974-83. PubMed ID: 18624739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SeaWiFS satellite monitoring of oil spill impact on primary production in the Galápagos Marine Reserve.
    Banks S
    Mar Pollut Bull; 2003; 47(7-8):325-30. PubMed ID: 12810097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe.
    Chapman H; Purnell K; Law RJ; Kirby MF
    Mar Pollut Bull; 2007 Jul; 54(7):827-38. PubMed ID: 17499814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of the plasma proteome of Atlantic cod (Gadus morhua): Changes due to crude oil exposure.
    Enerstvedt KS; Sydnes MO; Pampanin DM
    Mar Environ Res; 2018 Jul; 138():46-54. PubMed ID: 29692335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ecological significance of hazardous concentrations in a planktonic food web.
    De Laender F; Soetaert K; De Schamphelaere KA; Middelburg JJ; Janssen CR
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):247-53. PubMed ID: 20045193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of potential impacts and natural resource damages of oil.
    McCay DF; Rowe JJ; Whittier N; Sankaranarayanan S; Etkin DS
    J Hazard Mater; 2004 Feb; 107(1-2):11-25. PubMed ID: 15036639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a laboratory exposure system using marine fish to carry out realistic effect studies with produced water discharged from offshore oil production.
    Sundt RC; Meier S; Jonsson G; Sanni S; Beyer J
    Mar Pollut Bull; 2009 Sep; 58(9):1382-8. PubMed ID: 19442991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of fate and ecological effects of the herbicide linuron in freshwater model ecosystems between tropical and temperate regions.
    Daam MA; Van den Brink PJ; Nogueira AJ
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):424-33. PubMed ID: 18722013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.