These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 21391144)
1. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat. Price K; Krishnan K SAR QSAR Environ Res; 2011 Mar; 22(1-2):107-28. PubMed ID: 21391144 [TBL] [Abstract][Full Text] [Related]
2. An integrated QSPR-PBPK modelling approach for in vitro-in vivo extrapolation of pharmacokinetics in rats. Kamgang E; Peyret T; Krishnan K SAR QSAR Environ Res; 2008; 19(7-8):669-80. PubMed ID: 19061083 [TBL] [Abstract][Full Text] [Related]
3. QSARs for PBPK modelling of environmental contaminants. Peyret T; Krishnan K SAR QSAR Environ Res; 2011 Mar; 22(1-2):129-69. PubMed ID: 21391145 [TBL] [Abstract][Full Text] [Related]
4. Validation of a physiological modeling framework for simulating the toxicokinetics of chemicals in mixtures. Haddad S; Charest-Tardif G; Tardif R; Krishnan K Toxicol Appl Pharmacol; 2000 Sep; 167(3):199-209. PubMed ID: 10986011 [TBL] [Abstract][Full Text] [Related]
5. Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Tardif R; Charest-Tardif G; Brodeur J; Krishnan K Toxicol Appl Pharmacol; 1997 May; 144(1):120-34. PubMed ID: 9169076 [TBL] [Abstract][Full Text] [Related]
6. Quantitative structure-property relationships for interspecies extrapolation of the inhalation pharmacokinetics of organic chemicals. Béliveau M; Lipscomb J; Tardif R; Krishnan K Chem Res Toxicol; 2005 Mar; 18(3):475-85. PubMed ID: 15777087 [TBL] [Abstract][Full Text] [Related]
7. A spreadsheet program for modeling quantitative structure-pharmacokinetic relationships for inhaled volatile organics in humans. Béliveau M; Krishnan K SAR QSAR Environ Res; 2005; 16(1-2):63-77. PubMed ID: 15844443 [TBL] [Abstract][Full Text] [Related]
8. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions. Aylward LL; Kirman CR; Blount BC; Hays SM Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286 [TBL] [Abstract][Full Text] [Related]
9. Quantitative structure-property relationships for physiologically based pharmacokinetic modeling of volatile organic chemicals in rats. Béliveau M; Tardif R; Krishnan K Toxicol Appl Pharmacol; 2003 Jun; 189(3):221-32. PubMed ID: 12791307 [TBL] [Abstract][Full Text] [Related]
10. A mechanistic algorithm for predicting blood:air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin. Poulin P; Krishnan K Toxicol Appl Pharmacol; 1996 Jan; 136(1):131-7. PubMed ID: 8560466 [TBL] [Abstract][Full Text] [Related]
11. Computational estimation of errors generated by lumping of physiologically-based pharmacokinetic (PBPK) interaction models of inhaled complex chemical mixtures. LeFew W; El-Masri H Inhal Toxicol; 2012 Jan; 24(1):36-46. PubMed ID: 22149415 [TBL] [Abstract][Full Text] [Related]
12. Physiological modeling of the toxicokinetic interactions in a quaternary mixture of aromatic hydrocarbons. Haddad S; Tardif R; Charest-Tardif G; Krishnan K Toxicol Appl Pharmacol; 1999 Dec; 161(3):249-57. PubMed ID: 10620482 [TBL] [Abstract][Full Text] [Related]
13. An assessment of the impact of multi-route co-exposures on human variability in toxicokinetics: A case study with binary and quaternary mixtures of volatile drinking water contaminants. Tohon H; Valcke M; Haddad S J Appl Toxicol; 2019 Jul; 39(7):974-991. PubMed ID: 30834571 [TBL] [Abstract][Full Text] [Related]
14. Bioaccumulation potential of air contaminants: combining biological allometry, chemical equilibrium and mass-balances to predict accumulation of air pollutants in various mammals. Veltman K; McKone TE; Huijbregts MA; Hendriks AJ Toxicol Appl Pharmacol; 2009 Jul; 238(1):47-55. PubMed ID: 19389415 [TBL] [Abstract][Full Text] [Related]
15. Evaluation and modeling of the impact of coexposures to VOC mixtures on urinary biomarkers. Marchand A; Aranda-Rodriguez R; Tardif R; Nong A; Haddad S Inhal Toxicol; 2016; 28(6):260-73. PubMed ID: 27053005 [TBL] [Abstract][Full Text] [Related]
16. Physiologically based modeling of the maximal effect of metabolic interactions on the kinetics of components of complex chemical mixtures. Haddad S; Charest-Tardif G; Krishnan K J Toxicol Environ Health A; 2000 Oct; 61(3):209-23. PubMed ID: 11036509 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of potential toxicity from co-exposure to three CNS depressants (toluene, ethylbenzene, and xylene) under resting and working conditions using PBPK modeling. Dennison JE; Bigelow PL; Mumtaz MM; Andersen ME; Dobrev ID; Yang RS J Occup Environ Hyg; 2005 Mar; 2(3):127-35. PubMed ID: 15764536 [TBL] [Abstract][Full Text] [Related]
19. Detection rates, trends in and factors affecting observed levels of selected volatile organic compounds in blood among US adolescents and adults. Jain RB Environ Toxicol Pharmacol; 2017 Dec; 56():21-28. PubMed ID: 28869856 [TBL] [Abstract][Full Text] [Related]
20. A method for quantification of volatile organic compounds in blood by SPME-GC-MS/MS with broader application: From non-occupational exposure population to exposure studies. Aranda-Rodriguez R; Cabecinha A; Harvie J; Jin Z; Marchand A; Tardif R; Nong A; Haddad S J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jun; 992():76-85. PubMed ID: 25965874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]