These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21391262)

  • 1. Mapping reflexive shifts of attention in eye-centered and hand-centered coordinate systems.
    Cazzato V; Macaluso E; Crostella F; Aglioti SM
    Hum Brain Mapp; 2012 Jan; 33(1):165-78. PubMed ID: 21391262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. rTMS-induced virtual lesion of the posterior parietal cortex (PPC) alters the control of reflexive shifts of social attention triggered by pointing hands.
    Porciello G; Crostella F; Liuzza MT; Valentini E; Aglioti SM
    Neuropsychologia; 2014 Jul; 59():148-56. PubMed ID: 24813151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflexive social attention is mapped according to effector-specific reference systems.
    Crostella F; Carducci F; Aglioti SM
    Exp Brain Res; 2009 Aug; 197(2):143-51. PubMed ID: 19565230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic attention orienting by social and symbolic cues activates different neural networks: an fMRI study.
    Hietanen JK; Nummenmaa L; Nyman MJ; Parkkola R; Hämäläinen H
    Neuroimage; 2006 Oct; 33(1):406-13. PubMed ID: 16949306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The attracting power of the gaze of politicians is modulated by the personality and ideological attitude of their voters: a functional magnetic resonance imaging study.
    Cazzato V; Liuzza MT; Caprara GV; Macaluso E; Aglioti SM
    Eur J Neurosci; 2015 Oct; 42(8):2534-45. PubMed ID: 26262561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.
    Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG
    J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical regions involved in eye movements, shifts of attention, and gaze perception.
    Grosbras MH; Laird AR; Paus T
    Hum Brain Mapp; 2005 May; 25(1):140-54. PubMed ID: 15846814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eye contact boosts the reflexive component of overt gaze following.
    Dalmaso M; Alessi G; Castelli L; Galfano G
    Sci Rep; 2020 Mar; 10(1):4777. PubMed ID: 32179802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling attention to gaze and arrows in childhood: an fMRI study of typical development and Autism Spectrum Disorders.
    Vaidya CJ; Foss-Feig J; Shook D; Kaplan L; Kenworthy L; Gaillard WD
    Dev Sci; 2011 Jul; 14(4):911-24. PubMed ID: 21676110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visuospatial attention shifts by gaze and arrow cues: an ERP study.
    Hietanen JK; Leppänen JM; Nummenmaa L; Astikainen P
    Brain Res; 2008 Jun; 1215():123-36. PubMed ID: 18485332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating hemispheric lateralization of reflexive attention to gaze and arrow cues.
    Marotta A; Lupiáñez J; Casagrande M
    Brain Cogn; 2012 Dec; 80(3):361-6. PubMed ID: 22959915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct representations for shifts of spatial attention and changes of reward contingencies in the human brain.
    Tosoni A; Shulman GL; Pope AL; McAvoy MP; Corbetta M
    Cortex; 2013 Jun; 49(6):1733-49. PubMed ID: 22578709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociable roles of the superior temporal sulcus and the intraparietal sulcus in joint attention: a functional magnetic resonance imaging study.
    Materna S; Dicke PW; Thier P
    J Cogn Neurosci; 2008 Jan; 20(1):108-19. PubMed ID: 18095789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commonalities in the neural mechanisms underlying automatic attentional shifts by gaze, gestures, and symbols.
    Sato W; Kochiyama T; Uono S; Yoshikawa S
    Neuroimage; 2009 Apr; 45(3):984-92. PubMed ID: 19167506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dependencies of fronto-parietal BOLD responses evoked by covert visual search suggest eye-centred coding.
    Atabaki A; Dicke PW; Karnath HO; Thier P
    Eur J Neurosci; 2013 Apr; 37(8):1320-9. PubMed ID: 23406055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normal and impaired reflexive orienting of attention after central nonpredictive cues.
    Bonato M; Priftis K; Marenzi R; Zorzi M
    J Cogn Neurosci; 2009 Apr; 21(4):745-59. PubMed ID: 18578597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.