These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21391580)

  • 1. Dissolution behavior of different celluloses.
    Henniges U; Kostic M; Borgards A; Rosenau T; Potthast A
    Biomacromolecules; 2011 Apr; 12(4):871-9. PubMed ID: 21391580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc.
    Ishii D; Tatsumi D; Matsumoto T
    Carbohydr Res; 2008 Apr; 343(5):919-28. PubMed ID: 18299125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl.
    Hasani M; Henniges U; Idström A; Nordstierna L; Westman G; Rosenau T; Potthast A
    Carbohydr Polym; 2013 Nov; 98(2):1565-72. PubMed ID: 24053841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irradiation of cellulosic pulps: understanding its impact on cellulose oxidation.
    Henniges U; Okubayashi S; Rosenau T; Potthast A
    Biomacromolecules; 2012 Dec; 13(12):4171-8. PubMed ID: 23151127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system.
    Ramos LA; Assaf JM; El Seoud OA; Frollini E
    Biomacromolecules; 2005; 6(5):2638-47. PubMed ID: 16153102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of celluloses, plant holocelluloses, and wood pulps by size-exclusion chromatography/multi-angle laser-light scattering.
    Ono Y; Isogai A
    Carbohydr Polym; 2021 Jan; 251():117045. PubMed ID: 33142603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-scattering analysis of native wood holocelluloses totally dissolved in LiCl-DMI solutions: high probability of branched structures in inherent cellulose.
    Yamamoto M; Kuramae R; Yanagisawa M; Ishii D; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):3982-8. PubMed ID: 21928815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes.
    Potthast A; Röhrling J; Rosenau T; Borgards A; Sixta H; Kosma P
    Biomacromolecules; 2003; 4(3):743-9. PubMed ID: 12741793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving molar mass analysis of cellulose samples with limited solubility.
    Silbermann S; Weilach C; Kliba G; Fackler K; Potthast A
    Carbohydr Polym; 2017 Dec; 178():302-310. PubMed ID: 29050598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose acetates from linters and sisal: correlation between synthesis conditions in DMAc/LiCl and product properties.
    Ass BA; Ciacco GT; Frollini E
    Bioresour Technol; 2006 Sep; 97(14):1696-702. PubMed ID: 16311032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution.
    Jin H; Zha C; Gu L
    Carbohydr Res; 2007 May; 342(6):851-8. PubMed ID: 17280653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development.
    Röhrling J; Potthast A; Rosenau T; Lange T; Ebner G; Sixta H; Kosma P
    Biomacromolecules; 2002; 3(5):959-68. PubMed ID: 12217041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-State One- and Two-Dimensional NMR Spectroscopy of High-Molecular-Weight Cellulose.
    Holding AJ; Mäkelä V; Tolonen L; Sixta H; Kilpeläinen I; King AW
    ChemSusChem; 2016 Apr; 9(8):880-92. PubMed ID: 27010664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliable dn/dc Values of Cellulose, Chitin, and Cellulose Triacetate Dissolved in LiCl/N,N-Dimethylacetamide for Molecular Mass Analysis.
    Ono Y; Ishida T; Soeta H; Saito T; Isogai A
    Biomacromolecules; 2016 Jan; 17(1):192-9. PubMed ID: 26618937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of solvent exchange on the solid structure and dissolution behavior of cellulose.
    Ishii D; Tatsumi D; Matsumoto T
    Biomacromolecules; 2003; 4(5):1238-43. PubMed ID: 12959589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy.
    Akerholm M; Hinterstoisser B; Salmén L
    Carbohydr Res; 2004 Feb; 339(3):569-78. PubMed ID: 15013393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the stability of cellulose-holocellulose solutions in N,N-dimethylacetamide-lithium chloride by size exclusion chromatography.
    Jerosch H; Lavédrine B; Cherton JC
    J Chromatogr A; 2001 Aug; 927(1-2):31-8. PubMed ID: 11572395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential interactions between lithium chloride and glucan chains in N,N-dimethylacetamide drive cellulose dissolution.
    Gross AS; Bell AT; Chu JW
    J Phys Chem B; 2013 Mar; 117(12):3280-6. PubMed ID: 23442105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How alkaline solvents in viscosity measurements affect data for oxidatively damaged celluloses. Cuoxam and Cadoxen.
    Zaccaron S; Henniges U; Potthast A; Rosenau T
    Carbohydr Polym; 2020 Jul; 240():116251. PubMed ID: 32475551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial dissolution of ACQ-treated wood in lithium chloride/N-methyl-2-pyrrolidinone: separation of copper from potential lignocellulosic feedstocks.
    Eberhardt TL; Lebow S; Reed KG
    Chemosphere; 2012 Feb; 86(8):797-801. PubMed ID: 22154004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.