These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles. Bauer C; Abid JP; Fermin D; Girault HH J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867 [TBL] [Abstract][Full Text] [Related]
3. Optical self-energy in graphene due to correlations. Hwang J; LeBlanc JP; Carbotte JP J Phys Condens Matter; 2012 Jun; 24(24):245601. PubMed ID: 22609689 [TBL] [Abstract][Full Text] [Related]
4. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function. Dahnovsky Y J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334 [TBL] [Abstract][Full Text] [Related]
5. Scattering and interference in epitaxial graphene. Rutter GM; Crain JN; Guisinger NP; Li T; First PN; Stroscio JA Science; 2007 Jul; 317(5835):219-22. PubMed ID: 17626878 [TBL] [Abstract][Full Text] [Related]
6. The birth of a quasiparticle in silicon observed in time-frequency space. Hase M; Kitajima M; Constantinescu AM; Petek H Nature; 2003 Nov; 426(6962):51-4. PubMed ID: 14603313 [TBL] [Abstract][Full Text] [Related]
7. The optical phonon resonance scattering with spin-conserving and spin-flip processes between Landau levels in graphene. Wang ZW; Li ZQ; Li SS J Phys Condens Matter; 2014 Oct; 26(39):395302. PubMed ID: 25192437 [TBL] [Abstract][Full Text] [Related]
8. Low-energy electron scattering on deuterated nanocrystalline diamond films-a model system for understanding the interplay between density-of-states, excitation mechanisms and surface versus lattice contributions. Amiaud L; Martin I; Milosavljević AR; Michaelson Sh; Hoffman A; Azria R; Lafosse A Phys Chem Chem Phys; 2011 Jun; 13(24):11495-502. PubMed ID: 21594243 [TBL] [Abstract][Full Text] [Related]
9. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Sun D; Wu ZK; Divin C; Li X; Berger C; de Heer WA; First PN; Norris TB Phys Rev Lett; 2008 Oct; 101(15):157402. PubMed ID: 18999638 [TBL] [Abstract][Full Text] [Related]
10. Phonon dispersion of quasi-freestanding graphene on Pt(111). Politano A; Marino AR; Chiarello G J Phys Condens Matter; 2012 Mar; 24(10):104025. PubMed ID: 22354008 [TBL] [Abstract][Full Text] [Related]
11. Studies of electron-phonon and phonon-phonon interactions in InN using ultrafast Raman spectroscopy. Tsen KT; Ferry DK J Phys Condens Matter; 2009 Apr; 21(17):174202. PubMed ID: 21825406 [TBL] [Abstract][Full Text] [Related]
12. Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction. Chatelain RP; Morrison VR; Klarenaar BL; Siwick BJ Phys Rev Lett; 2014 Dec; 113(23):235502. PubMed ID: 25526134 [TBL] [Abstract][Full Text] [Related]
13. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport. Ni GX; Zheng Y; Bae S; Kim HR; Pachoud A; Kim YS; Tan CL; Im D; Ahn JH; Hong BH; Ozyilmaz B ACS Nano; 2012 Feb; 6(2):1158-64. PubMed ID: 22251076 [TBL] [Abstract][Full Text] [Related]