BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 21391649)

  • 1. Modification of keap1 cysteine residues by sulforaphane.
    Hu C; Eggler AL; Mesecar AD; van Breemen RB
    Chem Res Toxicol; 2011 Apr; 24(4):515-21. PubMed ID: 21391649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the highly reactive cysteine 151 in the chemopreventive agent-sensor Keap1 protein is method-dependent.
    Eggler AL; Luo Y; van Breemen RB; Mesecar AD
    Chem Res Toxicol; 2007 Dec; 20(12):1878-84. PubMed ID: 17935299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane.
    Hong F; Freeman ML; Liebler DC
    Chem Res Toxicol; 2005 Dec; 18(12):1917-26. PubMed ID: 16359182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2.
    Eggler AL; Liu G; Pezzuto JM; van Breemen RB; Mesecar AD
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10070-5. PubMed ID: 16006525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening for natural chemoprevention agents that modify human Keap1.
    Hu C; Nikolic D; Eggler AL; Mesecar AD; van Breemen RB
    Anal Biochem; 2012 Feb; 421(1):108-14. PubMed ID: 22074792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
    Zhang DD; Hannink M
    Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sites of alkylation of human Keap1 by natural chemoprevention agents.
    Luo Y; Eggler AL; Liu D; Liu G; Mesecar AD; van Breemen RB
    J Am Soc Mass Spectrom; 2007 Dec; 18(12):2226-32. PubMed ID: 17980616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications.
    Keum YS
    Ann N Y Acad Sci; 2011 Jul; 1229():184-9. PubMed ID: 21793854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1.
    Holland R; Fishbein JC
    Antioxid Redox Signal; 2010 Dec; 13(11):1749-61. PubMed ID: 20486763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophilic tuning of the chemoprotective natural product sulforaphane.
    Ahn YH; Hwang Y; Liu H; Wang XJ; Zhang Y; Stephenson KK; Boronina TN; Cole RN; Dinkova-Kostova AT; Talalay P; Cole PA
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9590-5. PubMed ID: 20439747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant sulforaphane and sensitizer trinitrobenzene sulfonate induce carboxylesterase-1 through a novel element transactivated by nuclear factor-E2 related factor-2.
    Chen YT; Shi D; Yang D; Yan B
    Biochem Pharmacol; 2012 Sep; 84(6):864-71. PubMed ID: 22776248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3.
    Rachakonda G; Xiong Y; Sekhar KR; Stamer SL; Liebler DC; Freeman ML
    Chem Res Toxicol; 2008 Mar; 21(3):705-10. PubMed ID: 18251510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism.
    Kansanen E; Bonacci G; Schopfer FJ; Kuosmanen SM; Tong KI; Leinonen H; Woodcock SR; Yamamoto M; Carlberg C; Ylä-Herttuala S; Freeman BA; Levonen AL
    J Biol Chem; 2011 Apr; 286(16):14019-27. PubMed ID: 21357422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteroaromatic 4-arylquinols are novel inducers of nuclear factor-erythroid 2-related factor 2 (Nrf2).
    Wong DP; Wells G; Hagen T
    Eur J Pharmacol; 2010 Sep; 643(2-3):188-94. PubMed ID: 20599909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane.
    Kensler TW; Egner PA; Agyeman AS; Visvanathan K; Groopman JD; Chen JG; Chen TY; Fahey JW; Talalay P
    Top Curr Chem; 2013; 329():163-77. PubMed ID: 22752583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione adduct of methylmercury activates the Keap1-Nrf2 pathway in SH-SY5Y cells.
    Yoshida E; Abiko Y; Kumagai Y
    Chem Res Toxicol; 2014 Oct; 27(10):1780-6. PubMed ID: 25271560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
    Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.
    Eggler AL; Small E; Hannink M; Mesecar AD
    Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system.
    Takaya K; Suzuki T; Motohashi H; Onodera K; Satomi S; Kensler TW; Yamamoto M
    Free Radic Biol Med; 2012 Aug; 53(4):817-27. PubMed ID: 22732183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound.
    Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.