BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 21391649)

  • 21. Prospective type 1 and type 2 disulfides of Keap1 protein.
    Holland R; Hawkins AE; Eggler AL; Mesecar AD; Fabris D; Fishbein JC
    Chem Res Toxicol; 2008 Oct; 21(10):2051-60. PubMed ID: 18729328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape.
    Dayalan Naidu S; Muramatsu A; Saito R; Asami S; Honda T; Hosoya T; Itoh K; Yamamoto M; Suzuki T; Dinkova-Kostova AT
    Sci Rep; 2018 May; 8(1):8037. PubMed ID: 29795117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants.
    Dinkova-Kostova AT; Holtzclaw WD; Cole RN; Itoh K; Wakabayashi N; Katoh Y; Yamamoto M; Talalay P
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11908-13. PubMed ID: 12193649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of chemical activation of Nrf2.
    Li Y; Paonessa JD; Zhang Y
    PLoS One; 2012; 7(4):e35122. PubMed ID: 22558124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring Keap1-Nrf2 interactions in single live cells.
    Baird L; Swift S; Llères D; Dinkova-Kostova AT
    Biotechnol Adv; 2014 Nov; 32(6):1133-44. PubMed ID: 24681086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction.
    Wang XJ; Sun Z; Chen W; Li Y; Villeneuve NF; Zhang DD
    Toxicol Appl Pharmacol; 2008 Aug; 230(3):383-9. PubMed ID: 18417180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles.
    Agyeman AS; Chaerkady R; Shaw PG; Davidson NE; Visvanathan K; Pandey A; Kensler TW
    Breast Cancer Res Treat; 2012 Feb; 132(1):175-87. PubMed ID: 21597922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells.
    Li B; Kim DS; Yadav RK; Kim HR; Chae HJ
    Int J Mol Med; 2015 Jul; 36(1):53-64. PubMed ID: 25936432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation.
    Hong F; Sekhar KR; Freeman ML; Liebler DC
    J Biol Chem; 2005 Sep; 280(36):31768-75. PubMed ID: 15985429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of novel small-molecule NRF2 activators: Structural and biochemical validation of stereospecific KEAP1 binding.
    Huerta C; Jiang X; Trevino I; Bender CF; Ferguson DA; Probst B; Swinger KK; Stoll VS; Thomas PJ; Dulubova I; Visnick M; Wigley WC
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt A):2537-2552. PubMed ID: 27474998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein.
    Dinkova-Kostova AT; Holtzclaw WD; Wakabayashi N
    Biochemistry; 2005 May; 44(18):6889-99. PubMed ID: 15865434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.
    Itoh K; Tong KI; Yamamoto M
    Free Radic Biol Med; 2004 May; 36(10):1208-13. PubMed ID: 15110385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway.
    Lau A; Whitman SA; Jaramillo MC; Zhang DD
    J Biochem Mol Toxicol; 2013 Feb; 27(2):99-105. PubMed ID: 23188707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalent modification of Keap1 at Cys77 and Cys434 by pubescenoside a suppresses oxidative stress-induced NLRP3 inflammasome activation in myocardial ischemia-reperfusion injury.
    Cheng Y; Cheng L; Gao X; Chen S; Wu P; Wang C; Liu Z
    Theranostics; 2021; 11(2):861-877. PubMed ID: 33391509
    [No Abstract]   [Full Text] [Related]  

  • 36. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles.
    Turpaev KT
    Biochemistry (Mosc); 2013 Feb; 78(2):111-26. PubMed ID: 23581983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterizations of Three Major Cysteine Sensors of Keap1 in Stress Response.
    Saito R; Suzuki T; Hiramoto K; Asami S; Naganuma E; Suda H; Iso T; Yamamoto H; Morita M; Baird L; Furusawa Y; Negishi T; Ichinose M; Yamamoto M
    Mol Cell Biol; 2016 Jan; 36(2):271-84. PubMed ID: 26527616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The GI-GPx gene is a target for Nrf2.
    Banning A; Deubel S; Kluth D; Zhou Z; Brigelius-Flohé R
    Mol Cell Biol; 2005 Jun; 25(12):4914-23. PubMed ID: 15923610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation.
    He X; Ma Q
    Mol Pharmacol; 2009 Dec; 76(6):1265-78. PubMed ID: 19786557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering a genetically encoded competitive inhibitor of the KEAP1-NRF2 interaction via structure-based design and phage display.
    Guntas G; Lewis SM; Mulvaney KM; Cloer EW; Tripathy A; Lane TR; Major MB; Kuhlman B
    Protein Eng Des Sel; 2016 Jan; 29(1):1-9. PubMed ID: 26489878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.