BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

718 related articles for article (PubMed ID: 21391674)

  • 1. Surfactant-free water-processable photoconductive all-carbon composite.
    Tung VC; Huang JH; Tevis I; Kim F; Kim J; Chu CW; Stupp SI; Huang J
    J Am Chem Soc; 2011 Apr; 133(13):4940-7. PubMed ID: 21391674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition.
    D'Arcy JM; Tran HD; Stieg AZ; Gimzewski JK; Kaner RB
    Nanoscale; 2012 May; 4(10):3075-82. PubMed ID: 22415611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.
    Dimiev AM; Gizzatov A; Wilson LJ; Tour JM
    Chem Commun (Camb); 2013 Apr; 49(26):2613-5. PubMed ID: 23435853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol-assisted graphene oxide-based thin film formation at pentane-water interface.
    Chen F; Liu S; Shen J; Wei L; Liu A; Chan-Park MB; Chen Y
    Langmuir; 2011 Aug; 27(15):9174-81. PubMed ID: 21714517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices.
    Han JT; Kim JS; Jo SB; Kim SH; Kim JS; Kang B; Jeong HJ; Jeong SY; Lee GW; Cho K
    Nanoscale; 2012 Dec; 4(24):7735-42. PubMed ID: 23135484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications.
    Kauffman DR; Star A
    Analyst; 2010 Nov; 135(11):2790-7. PubMed ID: 20733998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of carbon nanoscrolls from monolayer graphene.
    Xia D; Xue Q; Xie J; Chen H; Lv C; Besenbacher F; Dong M
    Small; 2010 Sep; 6(18):2010-9. PubMed ID: 20715074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing.
    Jariwala D; Sangwan VK; Lauhon LJ; Marks TJ; Hersam MC
    Chem Soc Rev; 2013 Apr; 42(7):2824-60. PubMed ID: 23124307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel hybrid carbon material.
    Nasibulin AG; Pikhitsa PV; Jiang H; Brown DP; Krasheninnikov AV; Anisimov AS; Queipo P; Moisala A; Gonzalez D; Lientschnig G; Hassanien A; Shandakov SD; Lolli G; Resasco DE; Choi M; Tománek D; Kauppinen EI
    Nat Nanotechnol; 2007 Mar; 2(3):156-61. PubMed ID: 18654245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersing carbon-based nanomaterials in aqueous phase by graphene oxides.
    Li Y; Yang J; Zhao Q; Li Y
    Langmuir; 2013 Nov; 29(44):13527-34. PubMed ID: 24099629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.
    Lin L; Zhang S
    Chem Commun (Camb); 2012 Oct; 48(82):10177-9. PubMed ID: 22932850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures.
    Vadahanambi S; Lee SH; Kim WJ; Oh IK
    Environ Sci Technol; 2013 Sep; 47(18):10510-7. PubMed ID: 23947834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of alternating multilayer films of graphene oxide and carbon nanotube and its application in mechanistic study of laser desorption/ionization of small molecules.
    Kim YK; Min DH
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2088-95. PubMed ID: 22435538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials.
    Zhang L; Zhang H; Zhou R; Chen Z; Li Q; Fan S; Ge G; Liu R; Jiang K
    Nanotechnology; 2011 Sep; 22(38):385704. PubMed ID: 21878720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.