These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21392279)

  • 1. Early evolution of vertebrate photoreception: lessons from lampreys and lungfishes.
    Collin SP
    Integr Zool; 2009 Mar; 4(1):87-98. PubMed ID: 21392279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri.
    Bailes HJ; Davies WL; Trezise AE; Collin SP
    BMC Evol Biol; 2007 Oct; 7():200. PubMed ID: 17961206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive gene loss reflects differences in the visual ecology of basal vertebrates.
    Davies WL; Collin SP; Hunt DM
    Mol Biol Evol; 2009 Aug; 26(8):1803-9. PubMed ID: 19398493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual ecology of the Australian lungfish (Neoceratodus forsteri).
    Hart NS; Bailes HJ; Vorobyev M; Marshall NJ; Collin SP
    BMC Ecol; 2008 Dec; 8():21. PubMed ID: 19091135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual opsin expression and morphological characterization of retinal photoreceptors in the pouched lamprey (Geotria australis, Gray).
    Warrington RE; Davies WIL; Hemmi JM; Hart NS; Potter IC; Collin SP; Hunt DM
    J Comp Neurol; 2021 Jun; 529(9):2265-2282. PubMed ID: 33336375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution and ecology of retinal photoreception in early vertebrates.
    Collin SP
    Brain Behav Evol; 2010; 75(3):174-85. PubMed ID: 20733293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey.
    Davies WL; Cowing JA; Carvalho LS; Potter IC; Trezise AE; Hunt DM; Collin SP
    FASEB J; 2007 Sep; 21(11):2713-24. PubMed ID: 17463225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ocular morphology of the southern hemisphere lamprey geotria australis gray, with special reference to optical specialisations and the characterisation and phylogeny of photoreceptor types.
    Collin SP; Potter IC; Braekevelt CR
    Brain Behav Evol; 1999 Aug; 54(2):96-118. PubMed ID: 10529522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis).
    Collin SP; Hart NS; Shand J; Potter IC
    Vis Neurosci; 2003; 20(2):119-30. PubMed ID: 12916734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origins of colour vision in vertebrates.
    Collin SP; Trezise AE
    Clin Exp Optom; 2004 Jul; 87(4-5):217-23. PubMed ID: 15312025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870).
    Bailes HJ; Robinson SR; Trezise AE; Collin SP
    J Comp Neurol; 2006 Jan; 494(3):381-97. PubMed ID: 16320259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of early vertebrate photoreceptors.
    Collin SP; Davies WL; Hart NS; Hunt DM
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2925-40. PubMed ID: 19720654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish.
    Pointer MA; Cheng CH; Bowmaker JK; Parry JW; Soto N; Jeffery G; Cowing JA; Hunt DM
    J Exp Biol; 2005 Jun; 208(Pt 12):2363-76. PubMed ID: 15939776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early evolution of multifocal optics for well-focused colour vision in vertebrates.
    Gustafsson OS; Collin SP; Kröger RH
    J Exp Biol; 2008 May; 211(Pt 10):1559-64. PubMed ID: 18456882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avian visual pigments: characteristics, spectral tuning, and evolution.
    Hart NS; Hunt DM
    Am Nat; 2007 Jan; 169 Suppl 1():S7-26. PubMed ID: 19426092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual Pigments, Ocular Filters and the Evolution of Snake Vision.
    Simões BF; Sampaio FL; Douglas RH; Kodandaramaiah U; Casewell NR; Harrison RA; Hart NS; Partridge JC; Hunt DM; Gower DJ
    Mol Biol Evol; 2016 Oct; 33(10):2483-95. PubMed ID: 27535583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of retinal ganglion cells in the southern hemisphere lamprey Geotria australis (Cyclostomata).
    Fletcher LN; Coimbra JP; Rodger J; Potter IC; Gill HS; Dunlop SA; Collin SP
    J Comp Neurol; 2014 Mar; 522(4):750-71. PubMed ID: 23897624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Current views on vision of mammals].
    Khokhlova TV
    Zh Obshch Biol; 2012; 73(6):418-34. PubMed ID: 23330397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cone Opsin Repertoire of Osteoglossomorph Fishes: Gene Loss in Mormyrid Electric Fish and a Long Wavelength-Sensitive Cone Opsin That Survived 3R.
    Liu DW; Wang FY; Lin JJ; Thompson A; Lu Y; Vo D; Yan HY; Zakon H
    Mol Biol Evol; 2019 Mar; 36(3):447-457. PubMed ID: 30590689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.